
Tools for Integrated Modeling, Design,
and Nonlinear Control

G.L. Blankenship, R. Ghanadan, H.G. Kwatny, C. LaVigna, and V. Polyakov

ncreasingly, design engineers are identifying new opportuni- I ties for innovation by incorporating active microprocessor
control into mechanical systems of all types; e.g., spacecraft and
aircraft, ground vehicles, robots, and machine tools. These me-
chanical systems are often complex, multibody dynamical sys-
tems with rigid and elastic substructures. Their behavior is often
inherently nonlinear over their operational range. Effective de-
sign of such systems and their controls relies on computer
analysis for composing and screening alternative design con-
cepts before constructing expensive prototypes. As a conse-
quence, there has been a considerable amount of work on
computational tools to support the development of models for
systems with embedded control elements (see, e.g., the examples
and references in [12] and [15]). To achieve optimal perfom-
ance, it is critical to integrate the design of the system structures
and the embedded control architecture and laws.

Our research is intended to contribute to the development of
tools to support integrated design. The goal is a system as
suggested in Fig. 1. We have not yet achieved all the elements
suggested in the figure. Two key missing elements are the graphi-
cal definition of systems (or a definition from a requirements
document) and the integrated optimization system. This article
is a "progress report" on the status of our efforts, focusing on two
components: (i) Dyzamics, a package for generating models of
multibody dynamics; and (ii) Controls, a package for design of
nonlinear control systems. In effect, we have thus far achieved
the system shown in Fig. 2. This article describes that system and
some of its applications.

Our technical approach combines symbolic and numerical
computing with graphics pre- and post-processing. Computer
algebra and mathematical symbolic manipulation systems have
matured substantially in recent years. Advances in this field
provide an opportunity for a new approach to the assembly of
models for integrated design. Model-building software based on
computer algebra need not constrain systems to be composed of
rigidly defined sets of components. Such an approach can greatly
expand the design engineer's ability to devise and experiment
with new types of elements and configurations. Equally impor-

A version of this paper was presented at the IEEELFAC Joint
Symposium on Computer-Aided Control System Design, Tucson,
March 1994. Blankenship, Ghanadan, and Polyakov are with the
Department of Electrical Engineering and Insiitute ,for Systems
Research, University of Maryland. Ghanadan 's work was done in
part while visiiing the Department ofEleci. Comp. Eng., University
of California, Santa Barbara. Kwutny is with the Department of
Mechanical Engineering, Drexel University, Philadelphia, PA. La E-
gnu is with Techno-Sciences, Lanham, MD.

REQUIREMENTS 7 7
I / I

,-----
~ O P T I M A L ; % E
I DESIGN ? 2

: I .-........,.-
I

GRAPHIC!

-+ l j b l POST-PROCESSOR

t
NUMERICAL

SIMULATION Controls

SYMBOLIC COMPUTING NUMERICAL COMPUTING

Fig. I . Integrated system for modeling and design of nonlinear
systems.

I
....

symbolic Preprocessor
........~. ~........,
..........------

Code Generation

, I

I \
, .

, ' llYmenCs1 -I,
' \ comput,ng .\ Lersl J '

, - , I

, <
' Grapl ical -.

Comput ing ,' ., Lersl ,' . ,
,,<

Fig. 2. Integrated symbolic-numeric modeling and design system.

tant is that access to analytical tools for nonlinear (control) design
and (bifurcation) analysis is natural in this setting. Some early
work on this idea is reported in [7]. Our work can be compared
to efforts such as the CAMeL system described in the paper [29],
which is an open environment for CACSD of mechatronic sys-
tems. CAMeL includes facilities for use of parallel computing.
We have not addressed this issue i n our work.

In the sections that follow we describe an integrated set of
tools developed using a symbolic computer algebra system
(Mathematica) for the generation of models and the design of
control laws for certain classes of nonlinear systems. The tools
include: (i) Dynamics: a toolbox for automatic generation of
explicit models for multibody dynamical systems composed of
rigid and flexible bodies interconnected by simple and compound
joints; and (ii) Controls: a toolbox for synthesis of nonlinear and
adaptive control laws based on dynamic inversion methods. Both
toolboxes include functions for generation of simulation models

April 1995 0272- 1708/95/$04.0001995IEEE 65

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

in MATLAB/Simulink or C. These programs provide functions
for the manipulation of dynamical models into standard formats
and for the basic mathematical operations commonly encoun-
tered in analysis of nonlinear systems. They implement algo-
rithms for adaptive and approximate nonlinear control and
provide flexible numerical simulation of the closed-loop systems
via automatic C or MATLAB code generation. We have used the
packages to generate models for complex systems including a
tracked, multiwheel vehicle (13 degrees of freedom) and to
design adaptive, stabilizing controllers for several systems, in-
cluding a conical magnetic bearing (18 states, one uncertain
parameter). These case studies are summarized to illustrate the
capabilities of the design system.

Modeling Multibody Systems
In this section we describe functions for modeling complex

multibody structures. The software is organized into a package,
called Dynamics, written in Mathematica. It generates models
for certain classes of multibody systems interconnected by
“joints.” Both rigid and elastic bodies may be included in the
system. Unlike many available programs (e.g., ADAMS, DY-
MAC, DADS, [121) that focus on the assembly of pure simulation
models, our tools generate explicit nonlinear equations of motion
in the form needed for control system design and other analytical
purposes. The models can be passed to other programs, including
MATLAB/Simulink, for execution and analysis.

Computer derivation of the equations of motion for multibody
systems has been previously considered by other investigators,
including Leu and Hemati [24], Cetinkunt and Ittoop [6], and
Sreenath [3]. Our approach extends that work in two important
aspects. First, we admit a more general class of joint models in
which the joint parameterization and all relevant joint kinematic
relations are derived directly from the specific joint definition-as
opposed to prescribing them beforehand. Second, we use Poin-
care’s form of Lagrange’s equations, which allows maximum
freedom of choice for velocity coordinates [2]. That can substan-
tially simplify the final model equations.

Our joint characterization distinguishes between “simple”
and “compound” joints. Most joints with multiple degrees of
freedom are realized physically as a sequence of joints each of
which has one degree of freedom-a subclass that we call com-
pound joints. When joints are modeled in this way, Poincare’s
equations are Lagrange’s equations. Any compound joint is
kinematically equivalent to a simple joint, and in our formulation
both joint descriptions induce the same parameterization. When
a compound joint is represented by its equivalent simple joint,
the resulting Poincare’s equations are much less complex than
Lagrange’s equations.

The Dynamics packa e creates fully nonlinear, explicit sym-
bolic models of the form 9

where q is a vector of configuration coordinates, p is a vector of

‘By “symbolic” we mean that the parameters and variables in the model may be left
in symbolic form, in the sense used in computer algebra languages. There is no need to
assign numerical values in the model construction phase.

1

Fig. 3. A multibody system with tree topology. Joint numbers are in
italic. The inertial reference frame is designated as body 0.

quasi-velocities, M(q) is the system inertia matrix, and Qp is the
vector of generalized forces acting on the system in the p-coor-
dinate frame. The models may be subjected to further symbolic
processing for nonlinear model reduction, nonlinear control sys-
tem design, linearization, etc.

To use the Dynamics package, a user supplies defining data
for individual joints and bodies, and the system structure. With
this data it can compute the kinetic energy function and inertia
matrix as well as the gravitational potential energy function. It
can also compute the strain potential energy and dissipation
functions associated with deformations of flexible bodies. Vari-
ous kinematic quantities can be obtained as well, e.g., end-effec-
tor configuration or velocity as a function of joint and
deformation parameters. To complete a dynamic analysis, the
user must supply the remaining parts of the potential energy
function. Generalized forces, including control signals, can be
generated using other available functions in the package.

Data Structures
The following paragraphs describe the data structures used to

create mathematical models and simulations for multibody sys-
tems.

Chains and Trees
The Dynamics package builds models for mechanical systems

which have a tree topology. Chain structures are a special case.
It can also accommodate algebraic and/or differential constraints
so that systems involving closed loops or rolling can be modeled.
Fig. 3 illustrates a tree, with bodies and joints numbered. Every
system contains a base reference frame which is designated body
“0”. Otherwise, bodies and joints can be numbered arbitrarily.

The tree is composed of a set of chains. For instance, the tree
in Fig. 3 contains three chains composed of the following se-
quences of bodies:

(0,1,2,4); {0,1,2,3,51; (0,1,2,3,6 1

All subchains of any tree will start with body 0, so we need
not list it. The body lists alone do not adequately define a tree.
For instance, bodies 5 and 6 both connect to body 3, but they do
so through different joints. This information can be provided by
defining each subchain as an ordered list of pairs-each pair

66 IEEE Control Systems

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

consisting of a body and its inboard joint: {inboard joint, body}.
For the example of Fig. 1 :

In summary, the system structure as a tree is defined by the
data structure:

T r e e = {list of subchains)
Subchain = ordered l is t of p a i r s
{ inboard j o i n t , body} = { { f i r s t inboard
j o i n t , f i r s t body}, . . . , { l a s t inboard
j o i n t , l a s t body}}

Joints
Joints characterize relative motion between bodies. This mo-

tion is defined in terms of the relative motion of an outboard
reference frame with respect to an inboard reference frame. The
relative velocity between the two frames is a 6-dimensional
vector, V, in which the first three components correspond to the
relative angular velocity vector, w, and the last three components
correspond to the relative linear velocity, v. A joint may have r
degrees of freedom. Associated with each such joint is a quasi-
velocity vector, p , of dimension r, and a joint coordinate vector,
q, of dimension r. The joint velocity vector, is related to its
quasi-velocity vectoor; p , through a joint map matrix, H(q):

A simple joint admits relative motion along axes fixed in one
of its two frames so that its joint map matrix H is independent of
the joint configuration parameters, q.

In the Dynamics package, joints are defined in terms of the
relative motion of a sequence of reference frames. The relative
motion between each pair of successive frames is characterized
by the action of a simple joint. For simple joints, the joint map
matrix, H , is the only defining data required.

The action of a general joint (or compound joint) consists of
relative motion of a sequence of serially connected simple joints.
Acompound joint composed of k simple joints is defined in terms
of the k simple joint map matrices, each of which is constant.

A k-frame compound joint with n degrees of freedom is
defined by the data structure {r, H,q,p}, where:

r = k-vector whose elements define the number of degrees

H = [Hl..Hk], a matrix composed of the kjoint map matrices

q = n-vector of joint coordinate names; and
p = n-vector of joint quasi-velocity names.

of freedom for each simple joint with n=rl+ ...+ rk;

of the simple joints;

Rigid Rodies
In chain and tree structures a rigid body interacts with other

bodies through joints. One of these is naturally an inboard joint
and all others are outboard joints (see Fig. 4). A body-fixed
reference frame can be defined with its origin at the inboard joint
location. This we call the body frame. With reference to the body
frame; the following quantities can be defined: the center of mass
location, all outboard joint locations and associated joint identi-

Outboard joints + / I \

Body Frame e
Inboard joint

Fig. 4. A body fued frame with origin at the inboard joint is
associated with every rigid body.

fication, and the inertia tensor about the center of mass. These
quantities, along with the mass, define the body

Accordingly, a rigid body with k outboard joints is defined by
the data structure

{com, {outi, .., outk}, m, Inertiu}

where com is the center of mass location, outi = [joint number,
location} for the ith outboard joint, m is the mass, and Inertia is
the inertia tensor; (about the center of mass).

The Dynamics package also accommodates flexible bodies
that satisfy the following conditions: (i) local deformations are
small, so linear stiffness (quadratic strain energy) and dissipation
(quadratic dissipation function) relations apply; (ii) body defor-
mations can be characterized by a finite set of deformation
coordinates; and (iii) body frame center of mass location and joint
locations and orientations can be defined as affine functions of
the deformation coordinates. Any flexible body model in which
a modal representation of flexure is valid satisfies these assump-
tions. Even with these assumptions large global deformations are
possible, in which case the body inertia matrix as represented in
the primary body frame may be a function of the deformation
coordinates.

A flexible body with k outboard joints and n deformation
coordinates is defined by the data structure

where C,,, is a matrix that defines the center of mass location;
outi = (joint number, Couti}, where Couti is a matrix that defines
the orientation and location of the ith outboard joint; m is the
mass; M(x) is the inertia matrix, B is the dissipation matrix; K is
the stiffness matrix; x is an n-vector of deformation coordinate
names; and v is an n-vector of deformation velocity (X) names.

Building Models
The following paragraphs describe the tools for creating

mathematical models and simulations for multibody systems.

Kinematic Relations
The relative joint configuration, consisting of a general rota-

tion and translation, is specified by a Euclidean configuration
matrix, X(q) . As noted above, the joint velocity vector Vis related
to its quasi-velocity vector, p , through a joint map matrix, H(q):
V=H(q)p. In addition, the coordinate velocity vector q is related
to the quasi-velocity vector by a square, nonsingular velocity
transformation matrix V(q)

4 = V (q) p

April 1995 67

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

The problem of joint modeling is the computation of the three
matrices V(q), X(q), and H (q) . In the Dynamics package the
required computations are carried out by the function Joints.
Joints takes a set of joint definitions and returns corresponding
lists of X , and H.

Building Systems
There are several alternatives for assembling system models

as equations that can be simulated or analyzed. The most direct
is to use the function CreateModel, which generates Poincare's
equations. However, a user may want to examine intermediate
results, such as some kinematic quantities or the system inertia
matrix, or to develop relations other than the dynamical equa-
tions. In such cases, a step-by-step process is appropriate using
more elemental constructions like Joints, TreeInertia, GravPo-
tential, PoincareFunc, etc. The function CreateModel provides a
shortcut for deriving the equations of motion. The equations are
produced in the form

Its calling syntax is:

W,X,H,M,F,p,q 1 =
CreateModel[JointLst,BodyLst,TreeLst,g,PE,Q]

where PE is the potential energy (constructed with other func-
tions in the package). The function CreateModelSim produces
the equations of motion in slightly different form which is more
convenient for large systems, particularly if simulation code is
required:

Its calling syntax is:

{ V,X,H,M,Cqp,Ep,qI =
CreateModelSim[JointLst,BodyLst,TreeLst,g,PE,Q]

CreateModelSim is always used to assemble the model when
simulation code is desired. In some applications, the matrix
C(q,p) is of interest in its own right. Another difference between
the two functions is that Vis provided as a list of (joint) velocity
transformation matrices, which is much more compact than when
assembled into a system matrix.

Example: Steering Vehicle
Consider the simple ground vehicle shown in Fig. 5. The

design problem is to develop a model for steering the vehicle
along a prescribed trajectory.

The following Mathematica program generates the model
equations for this simple system:

<Dynamics' (* Load the Modeling Pack-
age into Mathematica *)
(* Joint 1 *)

68

Fig. 5. Simple vhicle steering model. The center of mass is located
at (x,y). The attitude is theta. The front wheels are rotated by angle
delta about an axis of slope s. The slope is assumed small as are the
tire inertial parameters.

rl= { 3 1 ; q1= { theta, x , y 1 ;
pl= { wth , VX, VY 1 ;
H~={IO,O,O},{O,O,O},{~,O,O},{O,~,O},
{O, 0,lIt { O , O t O ~ ~ ;

r2={1}; q2={delta}; p2={wdel};
H2=Transpose[{{-
s/Sqrt[l+sA21 ,O,1/Sqrt[l+sA21 ,O,O,O}
1 1 ;
JointLst={{rl,Hl,ql,pl},{r2,H2,q2,p2
11;

(* Body 1 *)

cml={O,O,O};outl={{2,{a,O,O}},{3,{-

11=DiagonalMatrix[{Jxx,Jyy,Jzz}] ;

cm2={s*R/2,0, -R/2};

I2=DiagonalMatrix[{Ixx,Iyy,Izz}];
BodyLst = { { cml , out1 , ml , I1 } , { cm2, out2,
m2, I2 1 1 ;
TreeLst={{{1,1},{2,2}}};
ChnLst= { { 1,1}, { 2,2 1 1 ;
q={theta,x,y,delta};
p={wth,vx,vy,wdel};

(* Joint Computations)

{V,X,H}=Joints[JointLst];
(* Front Tire Forces *)

Force={O,O,O,O,-
kappa*ArcTan [v4y/v4xl , O} ;
Vel-
Names={w4x,w4y,w4z,v4x,v4y,v4z};
TerminalNode=4;
Ql=GeneralizedForce[ChnLst,Termi-
nalNode,BodyLst,X,H,q,p,Forc e,Vel-
Names] ;

(* Rear Tire Forces *)
ChnLst={{l,l}};
Force= { 0, 0, 0, F, -
kappa*ArcTan [v3y/v3x] , O} ;
Vel -
Names={w3x,w3y,w3z, v3x,v3y,v3z} ;
TerminalNode=3;

(* Joint 2 *)

b, 0, -R} } 1 ;

(* Body 2 *)

o~t2={{4,{s*R/2,O,-R}}};

IEEE Control Systems

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

1 spaceframe r- I

-6- - 1 0 0

x - 0 cos0 -sine

8 0 0 0

-
j i 0 sine cos0 0

engine I\= and drive train

IO e

TACOM Mock vehicle Model components
Fig. 6. Tracked vehicle modeled by the Dynamics package.

Fig. 7. Linking the Dynamics design package with MATLAB/Simulink.

Suppose our objective is to solve the problem of steering the
vehicle along a path of constant radius at constant speed Vd. There
are several ways of formulating this problem. One common
approach is to replace the constant radius condition by the
requirement that the angular velocity 00 is a constant, say wd.
This leads to a constant curvature path of radius R=V&d. From
a control theoretic point of view this suggests defining two output
variables

y2=WO-Od

and designing a controller to cause these outputs to track the
prescribed trajectory. This is a simple problem in nonlinear
control, readily solved by feedback linearization methods (for
example). A key issue in this design method is the construction
of “normal forms” and analysis of the (nonlinear) “zero dynam-
ics.” In the next section we shall use the LocalZeroDynamics
function in the Controls package to compute the zero dynamics
of the system relative to these two outputs and the two controls
(7;F). The (local) analysis of the zero dynamics shows that the
system is inherently non-minimum phase.

Application: Modeling a Multi-Wheeled, Tracked
Vehicle

The details of the functionsfj,..& are omitted (see [19] for The previous example illustrates some of the basic features
of the Dynamics package. In [23], the package was used to details).

April 1995 69

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

-
1 5

-
n
.E -10
0 0 2 4 6 8 10

b: 0 1 1

Time (secs) -
F
0,

c

a -Wheel 2
E -10
-
.E -15 ' I
0 0 2 4 6 8 10

Time (secs)

Fig. 8. Simulation of the petformance of the tracked vehicle using
MATLA B/Simulink.

compute the equations of motion of the tracked vehicle shown
in Fig. 6. This vehicle has ten wheels and a torsion bar based
suspension. Its basic components include the hull, turret, engine
and drive train, and the wheels and tracks. In our analysis the hull
is assumed to bounce, roll, and pitch, and each of the ten wheels
has one degree of freedom (a revolute joint). Thus, the (rigid
body) model has 13 degrees of freedom. (The case when the hull
is a flexible body was also treated in [23].) Using the Dynamics
package, the model equations were generated as a MATLAB
(C-code) MEX file and compiled with a MATLAB compatible
C-compiler. The model generation process requires about one
hour on a 486/33 MHz IBM-compatible PC.

Once the MEX file is generated, the user has three options for
exercising the model in MATLAB/Simulink: (i) from a MAT-
LAB script using one of MATLAB's ODE solvers; (ii) from a
MATLAB script using one of Simulink's ODE solvers; or (iii)
from Simulink's graphical interface using one of Simulink's
ODE solvers. A schematic of the last option is shown in Fig. 7.
A simulation of the vehicle traversing a bump is shown in Fig. 8.

Design of Nonlinear Control Laws
Given the capability to generate models with embedded (con-

trol) forces and torques, the natural complement is a system for
the computation of effective control laws. Since we are interested
in designing the architecture of the control system as well as in
crafting specific algorithms, it is important to use symbolic
computing methods in the design process. As the examples in the
previous section indicate, typical systems of interest are highly
nonlinear, and their models are too complex to be analyzed by
hand. While there has also been a large body of work on software
for the design and analysis of linear control systems, there has
been much less work on tools for the design of nonlinear control
systems. In this section we shall describe one approach to the
synthesis of such tools starting from the geometric formulation
of nonlinear control theory.

In 1987 0. Akhrif developed the first computational tools for
the design of nonlinear control systems using symbolic comput-
ing (Macsyma) [11. This work was inspired by the work of J.P.

Quadrat and his colleagues on the use of Macsyma (and Prolog)
in the treatment of optimal stochastic control problems [7]. The
work here builds on the tools developed by Akhrif. It employs
new techniques of nonlinear adaptive control [9,10] and perform-
ance evaluation by simulation.

The Controls package includes several easy-to-use functions
for computation of mathematical objects frequently encountered
in control system analysis, such as Lie derivatives, Lie brackets,
and controllability distributions, along with functions for syn-
thesis (e.g., the dynamic extension algorithm, decoupling control
algorithms of Hirschorn and Singh, adaptive and approximate
linearization algorithms of Ghanadan and Blankenship, and Kok-
otovic and Kanellopoulos, etc.), as well as functions for automat-
ic C and MATLAB code generation.

The tools presented here have been applied to realistic non-
linear problems for which hand calculation is not feasible and for
which conventional tools (e&, MATLAB, MatrixX, etc.) are not
well suited. Earlier versions of this package were used to design
controllers for an active automotive suspension and a magnetic
levitation system [4,11]. In this section we illustrate the power of
the tools by designing an adaptive tracking controller for conical
magnetic bearings, an 18-dimensional system with complicated
nonlinear dynamics [25]. At the end we return to the vehicle
steering problem defined above and show how to compute the
(local) zero dynamics of the model produced by the Dynamics
package.

ControZs Package Description
The Controls package deals with MIMO nonlinear systems

in the following form:

where

and 8 is a vector of (unknown) parameters. The tools in the
Controls package fall into four general categories: (i) basic
analysis tools; (ii) model representation; (iii) controller design;
and (iv) simulation.

Basic Analysis Tools
There are several mathematical operations that occur fre-

quently in nonlinear control systems design. Although these
operations involve straightforward mathematics, actual compu-
tation is tedious and time-consuming, especially for large (n>5
state) systems. The most common of these mathematical tools
are Lie derivatives and Lie brackets. The Lie derivative of a
function h relative to a functionfis defined by

70 IEEE Control Systems

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

This algorithm may be expressed in Mathematica as the follow-
ing sequence of “rules”:

LieDerivative [f-, h-, x-, 0 1 : =h
LieDerivative [f-, h-, x-1 : =Dot [Ja-
cob[h,xl, f l
LieDerivative [f-, h-, x-, 11 : =LieDeriva-
t ive [f , h, X I
LieDerivative [f-, h-, x-, n-1 : =LieDeriva-
tive [f , LieDerivative [f , h, XI , x, n-1 I
Here Jacob[h,x] is the Jacobian matrix of h with respect to x

and Dot is a Mathematicu function for multiplying arrays (ma-
trices), The definitions of LieDerivative make use of Mathe-
matica k pattern checking and conditional definition capabilities
to ensure that both the arguments and the answers make sense.

Muthemutica has the capability to use “pure” functions in
rules. This is a particularly convenient construction for creation
and maintenance of control system models. The power of this
feature can be seen in the definition of the Jacobian in Mathe-
mutica.

The f i s t line in the following is a usage statement associated
with the help system in Muthematica. The second line is the
computation of the gradient.
Grad::usage=”Grad[f,varlist] computes
the Grad of the function f with re-
spect to the list of variables varist.”
Grad[f-,var-List] :=D[f,#]& / @ var
In the definition of Grad, the expression D[f,#]& is a pure

(un-named) function. The symbol D stands for derivative; so
D[f,x] is the derivative off with respect to a (single) variable x.
To compute the gradient of a scalar function of a vector, we must
compute its derivative with respect to each element of the vector.
This is accomplished by “mapping” the operation “take the
derivative off with respect to a variable” (this is the meaning of
the expression D[f,#]&). The symbol & stands for a “name” that
one might assign to the function “take the derivative.” However,
since we will only use the pure function once, we do not need to
name it. Similarly, we do not need to name the variable that is its
argument, so the symbol # is used as a place marker.

Arguments to function definitions in Mathematica are of the
form h[x-]:=xA2, which means any symbol substituted for the
place holder x- is raised to the second power. The form var-List
means the argument must be a list, a form of data verification
provided in Mathematica.

The symbol I@ stands for the Mathematica operation Map;
so we could have written the definition as
Grad[f-, var-List] : =Map [D [f, #I &, var]
The use of pure functions and the capability to map functions

over sets of arguments are powerful constructions which increase
the expressive power of Mathemuticu programs. Map[] is espe-
cially useful in avoiding procedural programming constructions.
The use of Map[] in the definition of Grad[] illustrates the
capability of Mathematica to treat functions as objects like
symbols or numbers and use them as arguments to other func-
tions.

We use two lines (rules) to define the Jacobian of a function
with respect to a vector. The f i s t handles the case when the
function is a vector function of a vector argument. The second

’In the code examples that follow, we present selected components. In some cases
additional code is required to complete the definition.

handles the case of scalar functions (of vector arguments). These
may be regarded as rules for the computation. Mathematica uses
a kind of pattern matching to find the case that applies.*

Jacob[f~List,var~Listl:=Outer[D,f,var]
/;VectorQ[fl
Jacob[f-,var-Listl :=Grad[f ,varl
Outer[] is a built-in Mathemutica function which provides a

generalized outer product. The test VectorQ[fl defined by the
condition symbol “ /;” checks that f is a vector. If the test
succeeds, this rule is used. If not, the next one is used.

The next function illustrates the use of condition checking in
Mathematica in more detail. The symbol && is logical “and.” In
the first rule, we check that the functions are vector valued, that
their lengths are identical (==), and that the lengths equal the
length of the vector of variables. If this compound test succeeds,
the rule is used.

LieBracke t [f-Lis t , g-Lis t , var-Lis t 1 :
=(Jacob[g,var] . f -Jacob[f,varl . g / ;

VectorQ [f 3 && VectorQ [g] & &
Length [f] ==Length [g] ==Length [varl)
(* Test the data *)

LieBracket[f-,g-,var-List]:=
Jacob[g,var] f - Jacob[f,varl g

The next sequence illustrates the recursive power of the
language to define the Ad operator. (We omit the vector cases.)

Ad: :usage= ”Ad[f,g,varlist,nl computes
the nth Adjoint of the functions
f,g with respect to the variables
varlist . I‘

Ad [f , g, var, 01 =g
Ad[f,g,var,nl=

LieBracket [f,Ad[f,g,var,n-11 ,varl
Ad [f , g, varl =Ad [f , g, var, 1 I
Using these functions, we can express the Hunt-Su-Meyer

conditions [161 in Mathematica functions.
Control -
labilityDistribution[f-,g-,var-List] : =

Module [{ k} ,
Table [Ad [f, g,var, kl ,
{k, O,Length[varl-11 1 1
Controllable[f-,g-,var-List]:=

If [Rank[Control-
labilityDistribution[f,g,varll

==Length[var] ,True, False] ;

FeedbackLinearizable[f-,g-,var-List] : =

cm=Table [Ad [f , g, var , k I ,
{ k, 0, Length [var I -1 1 1
cml=Drop[cm, -13 ; (* drop last element *)
If [Rank[cm] ==Length[varl

Module [{cm, cml, k} ,

(* system is controllable *)
& & Involutive [cml, var] ,
True, False1 1 ;

The Module[] construction permits the use of local variables
in the definition of functions. We use the Mathematica Table[]
function to construct a set of derived vector fields. The function
Involutive[] checks that a set of vector fields is involutive, that
is, closed under the Lie Bracket.

Involutive[f_List,var-List]:=

April 1995 71

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

Module[{k,h,vecl,

h=Table[LieBracket [f [[il I ,
f[[jll,varl,

k=Length [f] ;

{i,l,kl,{j,i+l,kll;
vec=Union[Flatten[h,ll , f l ;

If [Rank [vec] Rank [f] , False, True 1 1
In this expression the notation f[[i]] takes the element of the

list (vector) f. Union and Flatten are Mathematica functions for
manipulating lists.

With these simple operations we can define several useful
functions for the analysis of nonlinear control systems; including
RelativeDegree[f,g,h,x], VectorRelativeDegree[f,g,h,x], Dy-
namicInverse[f,g,h,x], ZeroDynamics[f,g,h,x], etc. These func-
tions were implemented by translating into Mathematica
notation the definitions found in standard nonlinear control texts
[16,261.

Model Representation
While it is natural to work with conventional function defini-

tions for the vector fields that occur in nonlinear control prob-
lems, it is more useful to create a “data structure” for maintaining
models. The pure function construction in Mathematica is an
effective means for accomplishing this.

System. The data defining the controlled nonlinear system is
stored as a Mathematica data object with “head” System and the
associated structure

System[f, g, h,x,y, u, theta, analysisdatal
where f, g, and h are Mathematica functions, x, y, and u are lists
containing labels of the states, the outputs and the inputs, respec-
tively, and theta is a list of uncertain parameters found in f, g, or
h. As various function are applied to the System, their results are
appended in the list analysisdata.

The System object provides an economical and efficient
organization for often bulky and unenlightening expressions.

Makesystem. Constructing a System object is made rela-
tively easy by the Makesystem function which has the following
syntax:
MakeFunction [f, g, h, x, u,y, u, theta]
Although generally the components of the system model

(f,g,h) are stored as pure functions, the first three arguments of
Makesystem can also be given as ordinary Mathematica expres-
sions. Makesystem, if necessary, automatically converts the f,g,h
to functions and makes sure the dimensions agree before retum-
ing a valid System object. For example, the data
var={xl[tl,x2[tll;
f:={#[[2]],2 omega xi (1- mu #[[111”2
1 #[[211 -omega”2 #[[111)& ;
g:=iIOl,ll}l& ;
h:={#[[ll]}& ;
sys=MakeSystem[f,g,h,varl;

constructs the equations of the controlled Van der Pol Oscillator
with output

Showsystem and GetResults. In order to examine the con-
tents of the System object and extract the results that were
appended to it by previous analyses, two functions are provided:
Showsystem and GetResults.

ShowSystem[sys], where sys is a valid System, will display
the data of the system, f,g,h, etc., as well as a list of any functions
which have been applied and whose results are contained in the
data portion of this System.

GetResults[sys, “analysis”] will retum the results of function
called analysis which has been applied to sys earlier. For exam-
ple, to extract results of Singh from demosys one would use

Get Resul t s [demosy s , ’’ S ingh” 3
If the results are not contained within the System a string “Not

found” is returned.

Design Functions
In this section we describe functions for design of nonlinear

control laws, including adaptive and approximate methods.
Hirschorn and Singh. The Controls package includes two

functions for partial (input-output) feedback linearization via
construction of right inverse systems using the algorithm of
Hirschorn [14] and its extension by Singh [30]. Since Singh’s
algorithm is applicable to a wider class of systems, we discuss
its implementation. (Hirschom’s algorithm is implemented in a
function called Hirschom with syntax identical to Singh.)

The recursive nature of Singh’s algorithms is well suited for
implementation in Mathematica. The command to apply Singh’s
algorithm is

where sys is a valid System and opts are options described below.
Singh will append the following to the System

where z=c+Du and K defines the relationship between z and y
and its derivatives,

Singh[sys,optsl

SinghResults[D,c,K,z]

0 0 The control to tracky is given by ut=D (z-c) where D denotes
the pseudoinverse of D.

Several options are available for Singh. ScreenOutput+False
will disable almost all screen output. RetumObject- List, instead
of returning the original System with the results appended, will
simply return a list of the results.

Adaptivelkacking. The function Singh forms the foundation
for AdaptiveTracking, which implements the adaptive algorithm
of Ghanadan and Blankenship [9], basically an adaptive ob-
server. Given a System object with a list of uncertain parameters,
8, AdaptiveTracking computes the control law and the parameter
update law to track a desired trajectory.

The syntax for AdaptiveTracking is
AdaptiveTracking [sys, poles, adgain,
opts1

where sys is a valid System object, poles is a list of 1 X r i lists
with ri being the ith element of the vector relative degree for the
system, and adgain is the adaptive gain used in constructing the
parameter update law. adgain can be supplied in two forms: a
constant which sets the same gain for all parameters or a vector
in which the ith element sets the gain for the ith parameter.

4 (t) = x 2 (t)

X2(t)= 2 o g (1 - p 1 (t) *) x 2 (t) - W2X1(t)+U(t)

yf t)=xdt)

72 IEEE Control Systems

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

magnetic
coil

bearing
J stator

Fig. 9. Magnetic bearing system (afrer Mohamed and Emad 1992).

As in Singh, options for AdaptiveTracking include
Screenoutput and RetumObject. In addition, Simulate+MAT-
LAB option prepares the output to be simulated using MATLAB
as described below.

ApproximateAdaptiveTacking. Results of approximate
feedback linearization theory [13,171 are useful design altema-
tives to the more restrictive schemes based on exact (partial)
feedback linearization. This scheme assumes milder involutivity
and invertibility restrictions and can be applied to slightly non-
minimum phase nonlinear systems as well. In [101 an adaptive
approximate tracking and regulation scheme was presented for
nonlinear systems with uncertain parameters. The function Ap-
proximateAdaptiveTracking implements this scheme as a
Mathematica function with syntax:

ApproximateAdaptiveTrack-
ing[sys,poles,observerpoles,
Upda t eLawGain I

where observerpoles is a list of desired observer poles for the
adaptive scheme of [lo]. The tracking function searches for
linear functions of unknowduncertain parameters theta specified
in the dynamics. The regulation version of this algorithm can
handle parameters that do not appear linearly in the system.

Simulation

C, MATLAB, and Simulink Code Generation
Included in the package are two functions for automatic code

generation in C and FORTRAN. These functions automatically
write a subroutine compatible with the Numerical Recipes 1281
integrator, odeint, compile the program, execute it and return the
results to Mathematica. The following Mathematica command
line will execute the operations listed above:

SimulateC [sys, rules, ic, tfin, "Adap-
tiveTracking" , toll

where sys contains results of AdaptiveTracking, rules is a list of
substitutions which are made before simulation is executed, ic
are the initial conditions and to1 is an optional tolerance specifi-
cation.

Simulate. Functions called Simulate, and MATLABSimulate
are included in the package to provide simulation capabilities in
MATLAB. This is important for large systems, like the magnetic
bearing described in the following section. Due to memory
limitations it is not possible to analyze such a large model using
Mathematica alone. For example, in computing a control law for
the conical magnetic bearing, the function Singh found the 5x8

decoupling matrix, D, which occupied 1.6 Kb (ASCII) and its
pseudoinverse, Do, which occupied 3.87 Mb (ASCII). Thus, Do
was too large to be manipulated, and the control law, when saved
as ASCII text, was approximately 16 Mb. Consequently, straight
forward inclusion of the control and parameter update laws into
C or Fortran code was impractical for this application.

MATLABSimulate writes a MATLAB function which at each
time instant evaluates the components of the control law, numeri-
cally computes the pseudoinverse of D using the MATLAB
function pinv and then performs the necessary matrix multipli-
cations and additions to find the control. Besides allowing simu-
lation for large systems, linking to MATLAB in this way provides
extra flexibility in selecting time limits, tolerance, and initial
conditions without the need to recompile every time a change is
made. The disadvantage of this method is slower computation
time.

If the simulation is to be performed using MATLABSimulate,
the option

Simulate -> MATLAB
must be used when performing AdaptiveTracking, e.g.,
AdaptiveTracking[sys,poles,adgain,MAT-
LABSimulate->
True]
Next, we need to form the substitution rules for desired output

trajectory and its derivatives as well as the actual output and its
derivatives. The latter can be accomplished using the function
BuildSubRules with the following syntax:

BuildSubRules[sys,vectorrelativedegreel
The vector relative degree is displayed in the course of

running Singh or it can be computed using VectorRelativeDe-
gree. The substitution rules for the desired output and its deriva-
tives must be provided by the user.

Finally, we can automatically write a MATLAB function for
simulation using

Simulate [sys, "MATLAB", "dir" , "file-
name", rules]
The MATLAB function will be stored in the file called

fi1ename.m in directory dir and can be integrated using standard
MATLAB integrators, e.g. ode45. In fact, two options are avail-
able to use MATLAB to simulate systems. If the option MAT-
LAB is selected, then Simulate generates a MATLAB function
that will simulate the system using the MATLAB ODE solvers.
If the option Simulink is selected, then Simulate generates a file
that generates a Simulink block diagram, and the simulation can
be run from the Simulink environment.

Application: Adaptive Control of a Conical
Magnetic Bearing

Conical magnetic bearings have been the subject of active
research recently. They provide a non-trivial test for linear and
nonlinear design methodologies. For the bearing configuration
shown in Fig. 9 we use the model derived by Mohamed and Emad
1251 which has 18 states, eight controls, eight outputs, and several
disturbances. We include an uncertain parameter representing
rotor angular ~e loc i ty .~ Using the functions in the Controls
package, we first model the magnetic bearings as a System object

'Mohamed and Emad did not consider parametric uncertainty or adaptive control.

73 April 1995

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

and then design and simulate a nonlinear adaptive control which
achieves asymptotic tracking.

Model
The following Mathematica script defines the model based

on the analysis in [25] First, we define the right-hand side of
x = f (x , u, t ; e)
fll:= k ~ll[t]*~ll[t]*(l+ 2(DO +
xl [tl) / (pi*h) 1

xl [t 1) / (pi*h))

x2 [tl) / (pi*h) 1
fr2:= k x14[t]*x14[t]*(l+ 2(DO -
x2 [tl) / (pi*h) 1

x3 [tl) / (pi*h))

x3 it1) / (pi*h))
fr3:= k x17[t]*x17[t]*(l+ 2(DO +
x4 [tl 1 / (pi*h))
fr4:= k x18[t]*x18[t]*(l+ 2(DO -

x4 [tl) / (pi*h))
ran=2R/ (muO*A*N) ; cos=Cos [sigma] ;
mg=m*g/ 2 ;
H1=((l*l/Jy) + l/m) cos; H2=((l*l/Jy) -
l/m) cos;
rhsl:=x6[tl;
rhs2:=x7[tl;
rhs3:=x8[tl;
rhs4:=x9[tl;
rhs5:=xlO[t];
rhs6: = alpha/ (2m) (xl [tl +x2 [tl -p

-Hl((fll-fl2)cos-mg)+H2((frl-fr2)co s -
mg) ;

f12:= k ~12[t]*~12[t]*(l+ 2(DO -

frl:= k x13[t]*x13[t]*(l+ 2(DO +

f13:= k ~15[t]*~15[tl*(1+ 2(DO +

f14:= k ~16[t]*~16[t]*(l+ 2(DO -

JX / (2 Jy) (~8 [t 1 -X9 [t 1 -

rhs7: = alpha/ (2m) (xl [t] +x2 [tl) +p
Jx/(2Jy) (~8[t]-x9[tl)-
H1((frl-fr2)cos-mg)+H2((fll-fl2)cos -
mg) ;
rhs8: = alpha/ (2m) (x3 [tl +x4 [t] 1 +p

f14)cos+H2(fr3-fr4)cos;
rhs9:= alpha/ (2m) (x3 [t]+x4 [t]) -p

fr4)cos+H2(f13-f14)cos;
rhslO:= -beta/m x5[t]-2 gamma/m
xlO[t]+ @PTEXT =
+Sin [sigma] /m ((f 11 + f 12 + f 13 + f 14) -
(frl+fr2+fr3+fr4));
rhsll:= ((43.284433+~1) - ran (DO +
xl [tl 1 xll [tl) /N;
rhsl2:= ((44.208506+~2) - ran (DO -
xl[tl) x12 [tl /N;
rhsl3:= ((43.284433+~3) - ran (DO +
x2 [tl) x13 [tl) /N;
rhsl4:= ((44.208506+~4) - ran (DO -
x2[tl) xl4[tl)/N;
rhsl5:= ((44.208506+~5) - ran (DO +
x3 [tl) x15 [tl) /N;

Jx/(2Jy) (~6[t]-~7[tl)-Hl(f13-

Jx/ (2 Jy) (x6 [t I -x7 [t 1) -H1(f r 3 -

I Gap error response x lo4

I
0 0.02 0.04 0.06 0.08 0.1 0.12

-5 '
time (sec)

Fig. 10. Gap deviations w i thp= lP5 and initial parameter error of
10%.

Adaptive parameter update
I 10000

9900

9800

9700

h

E.

x
a 9600
3 9 9500

2 9400

9300

9200

91 00

9000

u

w"

time fsec)

Fig. 11. Parameter update with p = I P 5 and initial parameter error
of 10%.

rhsl6:= ((44.208506+~6) - ran (DO -
x3 [tl) x16 [tl) /N;
rhsl7:= ((44.208506+~7) - ran (DO +
x4[tl) xl7[tl)/N;
rhsl8:= ((44.208506+~8) - ran (DO -
x4 [tl x18 [tl) /N;
rhs:={rhsl, rhs2, rhs3, rhs4, rhs5,
rhs6, rhs7, rhs8, rhs9, rhsl0,
rhsll, rhsl2, rhsl3, rhsl4, rhsl5,
rhsl6, rhsl7, rhsl8 1 ;
Erhs : =Expand [rhs] ;
Then we identifyflx;8) and g(x; 8) fromflx, u, t; 8) using

the fact that u appears linearly.
gl:=Coefficient[Erhs,ul,l];
92 : =Coefficient [Erhs, u2,lI ;
g3:=Coefficient [Erhs,u3,1] ;
g4:=Coefficient [Erhs,u4,1] ;
95 : =Coefficient [Erhs, u5,l I ;
g6:=Coefficient[Erhs,u6,1];

74 IEEE Control Systems

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

g7:=Coefficient[Erhs,u7,1];
g8:=Coefficient[Erhs,u8,1];
g: =Trans-
pose [{gl, 92,93, g4,95,96,97,981 I ;
f:=Erhs-g.u;

~ : = { ~ l [t l , ~ 2 [t l , ~ 3 [t l , ~ 4 [t l , ~ 5 ~ t l , ~ 6 ~ t l ,
x7[tl ,x8[tl ,x9[tl ,xl O[tl,
xll [t] ,xl2tl ,x13 [tl ,x14 [t] ,x15 [tl ,x16 [tl
,x17[tl ,x18[tll;
Y:={Yl [tl ,Y2 [tl ,Y3 [tl tY4 [tl tY5 [tl I ;
~ : = { u l [t l , ~ 2 [t l , ~ 3 [t l , ~ 4 [t] , ~ 5 ~ t l , ~ 6 ~ t l ,
u7[tI,u8[tlI;
To speed up the calculation, wherever possible we substitute

numerical values for any parameters that are known with cer-
tainty. In this case, Values is the list of substitution rules. The
Mathematica symbol I. is a shorthand notation for the function
Substitute. Chop removes values below a given precision level
(due to numerical errors).
nf=Chop [f/ .Values] ; ng=Chop[g/.Val-
ues] ; nh=Chop [h/ .Values] ;
Using Makesystem we create a valid System object:
magbear=MakeSystem[nf,ng,nh,x,y,u,{pll;

Control System Design
Given the model, we apply AdaptiveTracking with options

which prepare the output for MATLAB simulation and suppress
output to the screen:

poles=Table[-10A3, I S } , {3}1;
adgain=10"4;
magbear=AdaptiveTracking[magbear,
adgain, poles,

Simulate-MATLAB,
ScreenOutput-False];

Throughout the above manipulations the rotor angular veloc-
ity was allowed to remain in its symbolic form, p. In general, the
angular velocity may not be known with certainty and we treat p
as an uncertain parameter. The parameter update law computed
by AdaptiveTracking will allow us to track the desired output.

Since the outputs are the deviation from gap equilibrium
value, our goal is to track zero. Therefore, we define the desired
output and its derivatives
ydes[l]=O;
ydes [2] =O;
ydes[3]=0;
ydes[4] =O;
ydes [5] =O;
outdrule=Table [outd [i] [y] -
D[~des[il,{t,j}l,{i,5I,{j,O,3Il
Next, we use BuildSubRules to write y (t) and its derivatives

thetarule=Thread[p,pA2}-
thetabarl [t] , thetabar2 [t]]
yrule=BuildSubRules [mag-
bear,{3,3,3,3,3},thetarulel
Finally, we combine the above rules with the substitution rule

for the actual value of p,
rules=Join[outdrule, yrule, {p-10A4}];

and write a MATLAB function to simulate the controlled system,
MATLABSimulate [magbear, "-/MagBear/ I' ,
"magsim", rules] ;

as functions of x,

April 1995

The following MATLAB code simulates the magnetic bear-

ic= [zeros (1,lO) ,
.002061,.002105,.002061,.002105,.002105,
.002105,. 002105, .002 105, 0,Ol ;
tfin=l; tstart=O;
[t,state]=ode45('magsim', tstart, tfin,ic, 1 .e-7,1);
The simulation was performed for values of p ranging from

10 to lo5. The nonlinear control law stabilized the system with
initial errors on the order of the equilibrium gap length (OS"),
a substantial improvement over the results obtained using linear
controls in [25]. Figs. 10 and 11 show stabilization of the outputs
and convergence of the parameter update with random initial
conditions and parameter error of 10%.

Additional details of the analysis of this system can be found
in [27].

ings,

Computing the Local Zero Dynamics
To illustrate the integrated use of the Dynamics and Controls

packages, we return to the problem of steering the car. Recall that
the equations for the car following a prescribed trajectory were
generated by the Dynamics package. We use the Controls pack-
age to compute the zero dynamics for the case of motion along
a straight path. The vector relative degree is found to be [1, I].
Therefore, the zero dynamics involve three first-order differen-
tial equations in the zero dynamics "state" variables. The zero
dynamics are computed using the following program.

<Controls' (* Load Nonlinear Control
Package *)
<GeoTools' (* Load Differential Geome-
try Tools used in Controls *)
(* compute relative degree *)

ro=VectorRelativeOrder [f, g, h, var] ;
(* compute feedback linearizing/decou-
pling control *)

{Rl,R2, R3,R4,u}=IOLinear-
ize[f,g,h,varl;

z=NormalCoordinates [f ,g,h,var,ro]
(* compute linearizable coordinates *)

/ . {wd-0 1 ;
(* shift origin to point of interest *)

{f,g,h,u, zI={f,g,h, u, z }
/.{~2-~2+Vd};

(* compute zero dynamics *)
uo=u/. {vl-O,v2-0};
fO=LocalZeroDynamics
[f, g, h, var, u0, zl ;

(* linearize zero dynamics and deter-
mine stability of origin *)

Anu=Jacob [f 0, {wl, w2, w3 1 I
/.{wl-0,w2-0,w3-0,b-a+nu};
Eigenvalues[Anu/.{nu-O,s-o}]

Up to fourth order terms the zero dynamics are defined by the
equations

wldot = { ~2 }
w2dot={(kappa*(2*a + R*s)*wl) /
(2*Izz) - (kappa*(a +
R*s)*wlA3) / (2*Izz) + (kappa*(-2*a +
2*b -R*s)*w3) / (2*Izz*Vd) + (kappa*(-
2*a + 2*b - R*s)*w3^3) / (12*Izz*VdA3)

75

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

+ wlA2* ((kappa*(a + R*s) *w3) /
(2*Izz*Vd)) +
w2* ((a*kappa*R*s) / (2*Izz*Vd) +
(a*kappa*R*s*wl*w3) / (2*Izz*VdA2) -
(a*kappa*R*s*w3”2) / (4*Izz*VdA3)
+wlA2*(-(a*kappa*R*s)/(2*Izz*Vd))l
w3dot={(kappa*wl) / ml - (kappa*wlA3)
/ (2*ml) -(2*kappa*w3) / (ml*Vd) -
(kappa*w3^3) / (3*ml*vdA3) +
w1^2* ((kappa”w3) / (2*ml*Vd)) +
w2* ((kappa*R*s) / (2*ml*Vd) +
(kappa*R*s*wl*w3) / (2*ml*VdA2) -
(kappa*R*s*w3^2) / (4*ml*VdA3) -
BPTEXT = (kappa*R*s*w3^4) / (16*ml*VdA5)
+ w1^2* (- (kappa*R*s) / (2*ml*Vd))) l
We can test the stability of the equilibrium point w=O by

examining the linearized zero dynamics computed at the end of
the program

1

I - -
mlVd 1

The eigenvalues are readily obtained but they are lengthy
functions of the parameters. Some insight is obtained, however,
by examining the special case, a=b and s=O, in which case the
eigenvalues simplify to

Hence, we see that the zero dynamics are unstable. Because
the eigenvalues vary smoothly as a function of parameters, this
situation will be true for a-b and s small, but not necessarily zero.
Furthermore, since I , is small, X2,3 are a pair of “parasitic” zeros,
one of which is far into the right half plane, the other to the left.
These locations may or may not make the vehicle difficult to
control (by an experienced driver).

The technique for computing the (local) zeros of a nonlinear
control system is described in [19]. Some earlier work which
indicated the difficulty of this computation was reported by de
Jager [8].

Conclusions
Integrated design of systems and their controls requires tools

for symbolic modeling and manipulation. Our approach involves
the integration of symbolic and numerical computing. Successful
modeling of complex vehicle dynamics and design of adaptive
tracking controls for a detailed model of a magnetic bearing
demonstrate that this methodology can solve realistic problems.

Remark
The Controls package also includes a collection of functions

for the design and analysis of linear control systems.

Acknowledgement
Portions of this work were supported in part by the US A m y

TACOM under Contract No. DAAE07-93-C-R022.

References
[11 0. Akhrif, Using Computer Algebra in the Design of Nonlinear Control
Systems, M.S. thesis, University of Maryland at College Park, 1987.

[2] V.I. Arnold, V.V. Kozlov, and A.I. Neishtadt, Mathematical Aspects of
Classical and Celestial Mechanics, in Encyclopedia of Mathematical Sci-
ences, V.I. Amold, ed., vol. 3, Springer-Verlag, Heidelberg, 1988.

[3] G.L. Blankenship and N. Sreenath, “Symbolic and Numerical Modeling
and Design of Nonlinear Control Systems for Multibody Systems,” Proc.
1991 Vehicle Tech. Con$, Simulation and Ground Vehicle Robotics, US.
Army TACOM, June 1991, pp. 123-135.

[4] G.L. Blankenship, R. Ghanadan, and V. Polyakov, “Nonlinear Adaptive
Control of Active Vehicle Suspension,” Proc. 1993ACC, San Francisco, June
1993.

[5] G.L. Blankenship, R. Ghanadan, H.G. Kwatny, and V. Polyakov, “Mod-
eling and Design Tools for Control of Multibody Systems,” Proc. ASME
Winter Annual Meeting: High Performance Computing in Vehicle Systems,
New Orleans, 1993.

[6] S. Cetinkunt, and H. Ittoop, “Computer-Automated Symbolic Modeling
of Dynamics of Robotic Manipulators with Flexible Links,” ZEEE Trans.
Robotics and Automation, 8(1992), pp. 94-105.

171 J.P. Chancelier, C. Gomez, J.P. Quadrat, and A. Sulem, “Pandore,” (Proc.
NATO Advanced Study Institute on CAD of Control Systems, I1 Ciocco,
September 1987), in Advanced Computing Concepts and Techniques in
Control Engineering, M. Denham and A. Laub, eds., Springer-Verlag, New
York, pp. 81-125, 1988.

[8] B. de Jager, “The Use of Symbolic Computation in Nonlinear Control: Is
It Viable?,” Proc. IEEE Conference on Decision and Control, San Antonio,
TX, 1993, pp. 276- 281.

[9] R. Ghanadan and G. L. Blankenship, “Adaptive Output Tracking of
Invertible MIMO Nonlinear Systems,” Proc. of the 26th Con$ on In$
Sciences and Systems, Princeton, pp. 767-772, 1992.

[101 R. Ghanadan and G. L. Blankenship, “Adaptive Approximate Tracking
and Regulation of Nonlinear Systems,” in Proc. of 32nd IEEE CDC, San
Antonio, Dec. 1993; and IEEE Trans. on Aut. Cont., to appear.

[111 R. Ghanadan, Adaptive Control of Nonlinear Systems with Applications
to Flight Control Systems and Suspension Dynamics, Ph.D. thesis, Institute
for Systems Research, University of Maryland, College Park, 1993.

[121 E.J. Haug, ed., Computer Aided Analysis and Optimization of Mechani-
cal System Dynamics. NATO ASI, vol. 59, Springer-Verlag, Berlin, 1984.

[131 J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear Control Via Approxi-
mate Input-Output Linearization: The Ball and Beam Example,” IEEE Trans.
Aut. Cont., 37(1992), pp. 392-398.

[141 R.M. Hirschom, “Invertability of Multivariable Nonlinear Systems,”
SIAM J. Optim. and Control, 17(1979), pp. 289-297.

[I51 R.L. Huston, Multibody Dynamics, Butterworth Heinemann, Boston,
1990.

[16] A. Isidori, Nonlinear Control Systems, Springer-Verlag, Berlin, 1989.

[17) A.J. Krener, “Approximate Linearization by State Feedback and Coor-
dinate Changes,” System Control Letters, 5(1984). pp. 181-185.

[181 H.G. Kwatny and G.L. Blankenship, “Symbolic Construction of Models
for Multibody Dynamics,” IEEE Trans. Robotics and Automation, 10(1994),
to appear.

76 IEEE Control Systems

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

[I91 H.G. Kwatny and G.L. Blankenship, “Symbolic Tools for Variable
Structure Control System Design: The Zero Dynamics,” Proc. Workshop on
Robust Control via Variable Structure and Lyapunos Techniques, Benevento,
Italy, 1994.

[20] H.G. Kwatny and J. Berg, Variable Structure Regulation ofpower Plant
Drum Level, in Systems and Control Theory for Power Systems, Springer-
Verlag: New York, 1993.

[21] H.G. Kwatny, “Variable Structure Control of AC Drives,” in Variable
Structure Control for Robotics andAerospace Applications, K.D. Young, ed.,
Elsevier: Amsterdam, 1993.

[22] Kwatny, H.G. and H. Kim, “Variable Structure Regulation of Partially
Linearizable Dynamics,” Systems & Control Letters, 15(1990), pp. 67-80.

(231 C. LaVigna, H.G. Kwatny, G.L. Blankenship, Flexible Multibody Dy-
namical Analysis System, Techno-Sciences, Inc., Final Report, U.S. Army
TACOM Contract No. DAAE07-93-C-R022, 1993.

[24] M.C. Leu and H. Hemati, “Automated Symbolic Derivation of Dynamic
Equations for Robotic Manipulators,” ASME J. Dyn. Syst., Meas. and Con-
trol., 108(1986), pp. 172-179.

[25] A.M. Mohamed and F.P. Emad, “Conical Magnetic Bearings with Radial
and Thrust Control,’’ IEEE Trans. Aut. Cont., 37(1992), pp. 1859-1 868.

1261 H. Nijmeijer and A J. van der Shaft, Nonlinear Dynamical Control
Systems, Springer-Verlag, Berlin, 1990.

[27] V. Polyakov, R. Ghanadan, and G.L. Blankenship, “Nonlinear Adaptive
Control of Conical Magnetic Bearings,” 1994, to appear.

[28] W.H. Press, et al., Numerical Recipes in C: The Art of Scientijk
Computing, University Press, New York, 1992.

[29] R. Rutz, and J. Richert, “CAMeL-An Open CACSD Environment,”
Proc. IEEWIFAC Joint Symp. Computer-Aided Control System Design, Tuc-
son, March 1994, pp. 553-560.

[30] S.N. Singh, “A Modified Algorithm for Invertibility in Nonlinear Sys.
tems,” IEEE Trans. Aut. Conr., 25(1981), pp. 595-598.

Gihner L. Blankenship was bom in Beckley, WV, on
Sept. 11, 1945. He received the S.B., S.M., and Ph.D.
degrees from the Massachusetts Institute of Technology,
Cambndge, MA, in 1967,1969, and 1971, respectively.
He is a professor and associate chairman in the Depart-
ment of Electrical Engineering, University of Maryland,
College Park. He is a faculty associate with the Institute
for Systems Research and a member of the Applied
Mathematics Faculty. His research interests include dis-

crete event systems scheduling theory and applications, nonlinear and adap-
tive control theory, scattering theory and the mechanics of advanced
matenals, and the applications of AI methods and computer algebra in these
areas. Blankenship is a member of the Society for Industrial and Applied
Mathematics, the Association of Computing Machinery, and the Amencan
Society for Composite Materials. He is a Fellow of the IEEE.

Rem Ghanadan received B.S. degrees in EE and phys-
ics, summa cum laude, M.S. and Ph.D. degrees in EE
from the University of Maryland, College Park, in 1988,
1990, and 1993, respectively. In August 1993, hejoined
the University of California, Santa Barbara, as a visiting
research engineer. His research interests are in the areas
of nonlinear, and adaptive control, with applications to
flight control systems, automotive vehicles, and robot-
ics, and development of software tools for control engi-

neering. He is a member of IEEE and Phi Kappa Phi, and a fellow of Tau
Beta Pi.

Harry G. Kwatny received the B.S.M.E. degree from
Drexel Institute of Technology in 1961, the S.M. in
aeronautics and astronautics from the Massachusetts
Institute of Technology in 1962, and the Ph.D. (E.E.)
from the University of Pennsylvania in 1967. He is
currently S. Herbert Raynes Professor of Mechanical
Engineering at Drexel University, Philadelphia. His
main research interests include the analysis and control
of parameter dependent nonlinear dynamics and the use

of combined numeric-symbolic computation for addressing these problems.
He has contributed todisturbance accommodating control theory and variable
structure control. He has a strong interest in physical system modeling and
his application interests include the analysis and control of power plants and
power systems, flexible spacecraft and space robotics, flight control, ground
vehicle dynamics, and structural acoustics control.

Chris LaVigna received the B.S.M.E. and M.S.M.E.
degrees from the University of Maryland in 1985 and
1993, respectively. He is currently a senior design engi-
neer at Techno-Sciences Inc. in Lanham, MD. His main
research interests include the use of symbolic comput-
ing for the design and analysis of control systems for
nonlinear systems and the development of simulation
tools for validation of advanced control strategies. He
also has a strong interest in developing engineering

software to support linear and nonlinear control design applications.

Vadim Polyakov was bom in Kharkov, USSR, in 1967.
He received a B.A. in Slavic literature and russian area
studies from Princeton University in 1990 and a B.S. in
electrical engineering from the University of Maryland,
College Park, in 1992. Currently, he is a graduate stu-
dent in the Department of Electrical Engineering and a
Graduate Fellow at the Institute for Systems Research
at University of Maryland, College Park.

April 1995 77

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore. Restrictions apply.

