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ncreasingly, design engineers are identifying new opportuni- I ties for innovation by incorporating active microprocessor 
control into mechanical systems of all types; e.g., spacecraft and 
aircraft, ground vehicles, robots, and machine tools. These me- 
chanical systems are often complex, multibody dynamical sys- 
tems with rigid and elastic substructures. Their behavior is often 
inherently nonlinear over their operational range. Effective de- 
sign of such systems and their controls relies on computer 
analysis for composing and screening alternative design con- 
cepts before constructing expensive prototypes. As a conse- 
quence, there has been a considerable amount of work on 
computational tools to support the development of models for 
systems with embedded control elements (see, e.g., the examples 
and references in [12] and [15]). To achieve optimal perfom- 
ance, it is critical to integrate the design of the system structures 
and the embedded control architecture and laws. 

Our research is intended to contribute to the development of 
tools to support integrated design. The goal is a system as 
suggested in Fig. 1.  We have not yet achieved all the elements 
suggested in the figure. Two key missing elements are the graphi- 
cal definition of systems (or a definition from a requirements 
document) and the integrated optimization system. This article 
is a "progress report" on the status of our efforts, focusing on two 
components: (i) Dyzamics, a package for generating models of 
multibody dynamics; and (ii) Controls, a package for design of 
nonlinear control systems. In effect, we have thus far achieved 
the system shown in Fig. 2. This article describes that system and 
some of its applications. 

Our technical approach combines symbolic and numerical 
computing with graphics pre- and post-processing. Computer 
algebra and mathematical symbolic manipulation systems have 
matured substantially in recent years. Advances in this field 
provide an opportunity for a new approach to the assembly of 
models for integrated design. Model-building software based on 
computer algebra need not constrain systems to be composed of 
rigidly defined sets of components. Such an approach can greatly 
expand the design engineer's ability to devise and experiment 
with new types of elements and configurations. Equally impor- 
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Fig. 2. Integrated symbolic-numeric modeling and design system. 

tant is that access to analytical tools for nonlinear (control) design 
and (bifurcation) analysis is natural in this setting. Some early 
work on this idea is reported in [7]. Our work can be compared 
to efforts such as the CAMeL system described in the paper [29], 
which is an open environment for CACSD of mechatronic sys- 
tems. CAMeL includes facilities for use of parallel computing. 
We have not addressed this issue i n  our work. 

In the sections that follow we describe an integrated set of 
tools developed using a symbolic computer algebra system 
(Mathematica) for the generation of models and the design of 
control laws for certain classes of nonlinear systems. The tools 
include: (i) Dynamics: a toolbox for automatic generation of 
explicit models for multibody dynamical systems composed of 
rigid and flexible bodies interconnected by simple and compound 
joints; and (ii) Controls: a toolbox for synthesis of nonlinear and 
adaptive control laws based on dynamic inversion methods. Both 
toolboxes include functions for generation of simulation models 
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in MATLAB/Simulink or C. These programs provide functions 
for the manipulation of dynamical models into standard formats 
and for the basic mathematical operations commonly encoun- 
tered in analysis of nonlinear systems. They implement algo- 
rithms for adaptive and approximate nonlinear control and 
provide flexible numerical simulation of the closed-loop systems 
via automatic C or MATLAB code generation. We have used the 
packages to generate models for complex systems including a 
tracked, multiwheel vehicle (13 degrees of freedom) and to 
design adaptive, stabilizing controllers for several systems, in- 
cluding a conical magnetic bearing (18 states, one uncertain 
parameter). These case studies are summarized to illustrate the 
capabilities of the design system. 

Modeling Multibody Systems 
In this section we describe functions for modeling complex 

multibody structures. The software is organized into a package, 
called Dynamics, written in Mathematica. It generates models 
for certain classes of multibody systems interconnected by 
“joints.” Both rigid and elastic bodies may be included in the 
system. Unlike many available programs (e.g., ADAMS, DY- 
MAC, DADS, [ 121) that focus on the assembly of pure simulation 
models, our tools generate explicit nonlinear equations of motion 
in the form needed for control system design and other analytical 
purposes. The models can be passed to other programs, including 
MATLAB/Simulink, for execution and analysis. 

Computer derivation of the equations of motion for multibody 
systems has been previously considered by other investigators, 
including Leu and Hemati [24], Cetinkunt and Ittoop [6], and 
Sreenath [3]. Our approach extends that work in two important 
aspects. First, we admit a more general class of joint models in 
which the joint parameterization and all relevant joint kinematic 
relations are derived directly from the specific joint definition-as 
opposed to prescribing them beforehand. Second, we use Poin- 
care’s form of Lagrange’s equations, which allows maximum 
freedom of choice for velocity coordinates [2]. That can substan- 
tially simplify the final model equations. 

Our joint characterization distinguishes between “simple” 
and “compound” joints. Most joints with multiple degrees of 
freedom are realized physically as a sequence of joints each of 
which has one degree of freedom-a subclass that we call com- 
pound joints. When joints are modeled in this way, Poincare’s 
equations are Lagrange’s equations. Any compound joint is 
kinematically equivalent to a simple joint, and in our formulation 
both joint descriptions induce the same parameterization. When 
a compound joint is represented by its equivalent simple joint, 
the resulting Poincare’s equations are much less complex than 
Lagrange’s equations. 

The Dynamics packa e creates fully nonlinear, explicit sym- 
bolic models of the form 9 

where q is a vector of configuration coordinates, p is a vector of 

‘By “symbolic” we mean that the parameters and variables in the model may be left 
in symbolic form, in the sense used in computer algebra languages. There is no need to 
assign numerical values in the model construction phase. 

1 

Fig. 3. A multibody system with tree topology. Joint numbers are in 
italic. The inertial reference frame is designated as body 0. 

quasi-velocities, M(q) is the system inertia matrix, and Qp is the 
vector of generalized forces acting on the system in the p-coor- 
dinate frame. The models may be subjected to further symbolic 
processing for nonlinear model reduction, nonlinear control sys- 
tem design, linearization, etc. 

To use the Dynamics package, a user supplies defining data 
for individual joints and bodies, and the system structure. With 
this data it can compute the kinetic energy function and inertia 
matrix as well as the gravitational potential energy function. It 
can also compute the strain potential energy and dissipation 
functions associated with deformations of flexible bodies. Vari- 
ous kinematic quantities can be obtained as well, e.g., end-effec- 
tor configuration or velocity as a function of joint and 
deformation parameters. To complete a dynamic analysis, the 
user must supply the remaining parts of the potential energy 
function. Generalized forces, including control signals, can be 
generated using other available functions in the package. 

Data Structures 
The following paragraphs describe the data structures used to 

create mathematical models and simulations for multibody sys- 
tems. 

Chains and Trees 
The Dynamics package builds models for mechanical systems 

which have a tree topology. Chain structures are a special case. 
It can also accommodate algebraic and/or differential constraints 
so that systems involving closed loops or rolling can be modeled. 
Fig. 3 illustrates a tree, with bodies and joints numbered. Every 
system contains a base reference frame which is designated body 
“0”. Otherwise, bodies and joints can be numbered arbitrarily. 

The tree is composed of a set of chains. For instance, the tree 
in Fig. 3 contains three chains composed of the following se- 
quences of bodies: 

(0,1,2,4); {0,1,2,3,51; (0,1,2,3,6 1 

All subchains of any tree will start with body 0, so we need 
not list it. The body lists alone do not adequately define a tree. 
For instance, bodies 5 and 6 both connect to body 3, but they do 
so through different joints. This information can be provided by 
defining each subchain as an ordered list of pairs-each pair 
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consisting of a body and its inboard joint: {inboard joint, body}. 
For the example of Fig. 1 : 

In summary, the system structure as a tree is defined by the 
data structure: 

T r e e  = {list of subchains) 
Subchain = ordered l is t  of p a i r s  
{ inboard j o i n t  , body} = { { f i r s t  inboard 
j o i n t ,  f i r s t  body}, . . . , { l a s t  inboard 
j o i n t ,  l a s t  body}} 

Joints 
Joints characterize relative motion between bodies. This mo- 

tion is defined in terms of the relative motion of an outboard 
reference frame with respect to an inboard reference frame. The 
relative velocity between the two frames is a 6-dimensional 
vector, V, in which the first three components correspond to the 
relative angular velocity vector, w, and the last three components 
correspond to the relative linear velocity, v. A joint may have r 
degrees of freedom. Associated with each such joint is a quasi- 
velocity vector, p ,  of dimension r, and a joint coordinate vector, 
q, of dimension r. The joint velocity vector, is related to its 
quasi-velocity vectoor; p ,  through a joint map matrix, H(q):  

A simple joint admits relative motion along axes fixed in one 
of its two frames so that its joint map matrix H is independent of 
the joint configuration parameters, q. 

In the Dynamics package, joints are defined in terms of the 
relative motion of a sequence of reference frames. The relative 
motion between each pair of successive frames is characterized 
by the action of a simple joint. For simple joints, the joint map 
matrix, H ,  is  the only defining data required. 

The action of a general joint (or compound joint) consists of 
relative motion of a sequence of serially connected simple joints. 
Acompound joint composed of k simple joints is defined in terms 
of the k simple joint map matrices, each of which is constant. 

A k-frame compound joint with n degrees of freedom is 
defined by the data structure {r, H,q,p}, where: 

r = k-vector whose elements define the number of degrees 

H = [Hl..Hk], a matrix composed of the kjoint map matrices 

q = n-vector of joint coordinate names; and 
p = n-vector of joint quasi-velocity names. 

of freedom for each simple joint with n=rl+ ...+ rk; 

of the simple joints; 

Rigid Rodies 
In chain and tree structures a rigid body interacts with other 

bodies through joints. One of these is naturally an inboard joint 
and all others are outboard joints (see Fig. 4). A body-fixed 
reference frame can be defined with its origin at the inboard joint 
location. This we call the body frame. With reference to the body 
frame; the following quantities can be defined: the center of mass 
location, all outboard joint locations and associated joint identi- 

Outboard joints + / I \  

Body Frame e 
Inboard joint 

Fig. 4. A body fued frame with origin at the inboard joint is 
associated with every rigid body. 

fication, and the inertia tensor about the center of mass. These 
quantities, along with the mass, define the body 

Accordingly, a rigid body with k outboard joints is defined by 
the data structure 

{com, {outi, .., outk}, m, Inertiu} 

where com is the center of mass location, outi = [joint number, 
location} for the ith outboard joint, m is the mass, and Inertia is 
the inertia tensor; (about the center of mass). 

The Dynamics package also accommodates flexible bodies 
that satisfy the following conditions: (i) local deformations are 
small, so linear stiffness (quadratic strain energy) and dissipation 
(quadratic dissipation function) relations apply; (ii) body defor- 
mations can be characterized by a finite set of deformation 
coordinates; and (iii) body frame center of mass location and joint 
locations and orientations can be defined as affine functions of 
the deformation coordinates. Any flexible body model in which 
a modal representation of flexure is valid satisfies these assump- 
tions. Even with these assumptions large global deformations are 
possible, in which case the body inertia matrix as represented in 
the primary body frame may be a function of the deformation 
coordinates. 

A flexible body with k outboard joints and n deformation 
coordinates is defined by the data structure 

where C,,, is a matrix that defines the center of mass location; 
outi = (joint number, Couti}, where Couti is a matrix that defines 
the orientation and location of the ith outboard joint; m is the 
mass; M(x) is the inertia matrix, B is the dissipation matrix; K is 
the stiffness matrix; x is an n-vector of deformation coordinate 
names; and v is an n-vector of deformation velocity (X) names. 

Building Models 
The following paragraphs describe the tools for creating 

mathematical models and simulations for multibody systems. 

Kinematic Relations 
The relative joint configuration, consisting of a general rota- 

tion and translation, is specified by a Euclidean configuration 
matrix, X(q) .  As noted above, the joint velocity vector Vis related 
to its quasi-velocity vector, p ,  through a joint map matrix, H(q): 
V=H(q)p. In addition, the coordinate velocity vector q is related 
to the quasi-velocity vector by a square, nonsingular velocity 
transformation matrix V(q) 

4 = V ( q ) p  
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The problem of joint modeling is the computation of the three 
matrices V(q), X(q), and H ( q ) .  In the Dynamics package the 
required computations are carried out by the function Joints. 
Joints takes a set of joint definitions and returns corresponding 
lists of X ,  and H. 

Building Systems 
There are several alternatives for assembling system models 

as equations that can be simulated or analyzed. The most direct 
is to use the function CreateModel, which generates Poincare's 
equations. However, a user may want to examine intermediate 
results, such as some kinematic quantities or the system inertia 
matrix, or to develop relations other than the dynamical equa- 
tions. In such cases, a step-by-step process is appropriate using 
more elemental constructions like Joints, TreeInertia, GravPo- 
tential, PoincareFunc, etc. The function CreateModel provides a 
shortcut for deriving the equations of motion. The equations are 
produced in the form 

Its calling syntax is: 

W,X,H,M,F,p,q 1 = 
CreateModel[JointLst,BodyLst,TreeLst,g,PE,Q] 

where PE is the potential energy (constructed with other func- 
tions in the package). The function CreateModelSim produces 
the equations of motion in slightly different form which is more 
convenient for large systems, particularly if simulation code is 
required: 

Its calling syntax is: 

{ V,X,H,M,Cqp,Ep,qI = 
CreateModelSim[JointLst,BodyLst,TreeLst,g,PE,Q] 

CreateModelSim is always used to assemble the model when 
simulation code is desired. In some applications, the matrix 
C(q,p) is of interest in its own right. Another difference between 
the two functions is that Vis provided as a list of (joint) velocity 
transformation matrices, which is much more compact than when 
assembled into a system matrix. 

Example: Steering Vehicle 
Consider the simple ground vehicle shown in Fig. 5. The 

design problem is to develop a model for steering the vehicle 
along a prescribed trajectory. 

The following Mathematica program generates the model 
equations for this simple system: 

<Dynamics' ( *  Load the Modeling Pack- 
age into Mathematica * )  
( *  Joint 1 * )  

68 

Fig. 5. Simple vhicle steering model. The center of mass is located 
at (x,y). The attitude is theta. The front wheels are rotated by angle 
delta about an axis of slope s. The slope is assumed small as are the 
tire inertial parameters. 

rl= { 3 1 ; q1= { theta, x , y 1 ; 
pl= { wth , VX, VY 1 ; 
H~={IO,O,O},{O,O,O},{~,O,O},{O,~,O}, 
{O, 0,lIt { O , O t O ~ ~ ;  

r2={1}; q2={delta}; p2={wdel}; 
H2=Transpose[{{- 
s/Sqrt[l+sA21 ,O,1/Sqrt[l+sA21 ,O,O,O} 
1 1 ;  
JointLst={{rl,Hl,ql,pl},{r2,H2,q2,p2 
11;  

( *  Body 1 * )  

cml={O,O,O};outl={{2,{a,O,O}},{3,{- 

11=DiagonalMatrix[{Jxx,Jyy,Jzz}] ; 

cm2={s*R/2,0, -R/2}; 

I2=DiagonalMatrix[{Ixx,Iyy,Izz}]; 
BodyLst = { { cml , out1 , ml , I1 } , { cm2, out2, 
m2, I2 1 1 ; 
TreeLst={{{1,1},{2,2}}}; 
ChnLst= { { 1,1}, { 2,2 1 1 ; 
q={theta,x,y,delta}; 
p={wth,vx,vy,wdel}; 

( *  Joint Computations ) 

{V,X,H}=Joints[JointLst]; 
( *  Front Tire Forces * )  

Force={O,O,O,O,- 
kappa*ArcTan [v4y/v4xl , O} ; 
Vel- 
Names={w4x,w4y,w4z,v4x,v4y,v4z}; 
TerminalNode=4; 
Ql=GeneralizedForce[ChnLst,Termi- 
nalNode,BodyLst,X,H,q,p,Forc e,Vel- 
Names] ; 

( *  Rear Tire Forces * )  
ChnLst={{l,l}}; 
Force= { 0, 0, 0, F, - 
kappa*ArcTan [v3y/v3x] , O} ; 
Vel - 
Names={w3x,w3y,w3z, v3x,v3y,v3z} ; 
TerminalNode=3; 

( *  Joint 2 * )  

b, 0, -R} } 1 ;  

( *  Body 2 * )  

o~t2={{4,{s*R/2,O,-R}}}; 
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Fig. 6. Tracked vehicle modeled by the Dynamics package. 

Fig. 7. Linking the Dynamics design package with MATLAB/Simulink. 

Suppose our objective is to solve the problem of steering the 
vehicle along a path of constant radius at constant speed Vd. There 
are several ways of formulating this problem. One common 
approach is to replace the constant radius condition by the 
requirement that the angular velocity 00 is a constant, say wd. 
This leads to a constant curvature path of radius R=V&d. From 
a control theoretic point of view this suggests defining two output 
variables 

y2=WO-Od 

and designing a controller to cause these outputs to track the 
prescribed trajectory. This is a simple problem in nonlinear 
control, readily solved by feedback linearization methods (for 
example). A key issue in this design method is the construction 
of “normal forms” and analysis of the (nonlinear) “zero dynam- 
ics.” In the next section we shall use the LocalZeroDynamics 
function in the Controls package to compute the zero dynamics 
of the system relative to these two outputs and the two controls 
(7;F). The (local) analysis of the zero dynamics shows that the 
system is inherently non-minimum phase. 

Application: Modeling a Multi-Wheeled, Tracked 
Vehicle 

The details of the functionsfj,..& are omitted (see [19] for The previous example illustrates some of the basic features 
of the Dynamics package. In [23], the package was used to details). 

April 1995 69 

Authorized licensed use limited to: Harry Kwatny. Downloaded on September 24,2022 at 15:28:39 UTC from IEEE Xplore.  Restrictions apply. 



- 
1 5  

- 
n 
.E -10 
0 0  2 4 6 8 10 

b: 0 1  1 

Time (secs) - 
F 
0, 

c 

a -Wheel 2 
E -10 
- 
.E -15 ' I 
0 0  2 4 6 8 10 

Time (secs) 

Fig. 8. Simulation of the petformance of the tracked vehicle using 
MATLA B/Simulink. 

compute the equations of motion of the tracked vehicle shown 
in Fig. 6. This vehicle has ten wheels and a torsion bar based 
suspension. Its basic components include the hull, turret, engine 
and drive train, and the wheels and tracks. In our analysis the hull 
is assumed to bounce, roll, and pitch, and each of the ten wheels 
has one degree of freedom (a revolute joint). Thus, the (rigid 
body) model has 13 degrees of freedom. (The case when the hull 
is a flexible body was also treated in [23].) Using the Dynamics 
package, the model equations were generated as a MATLAB 
(C-code) MEX file and compiled with a MATLAB compatible 
C-compiler. The model generation process requires about one 
hour on a 486/33 MHz IBM-compatible PC. 

Once the MEX file is generated, the user has three options for 
exercising the model in MATLAB/Simulink: (i) from a MAT- 
LAB script using one of MATLAB's ODE solvers; (ii) from a 
MATLAB script using one of Simulink's ODE solvers; or (iii) 
from Simulink's graphical interface using one of Simulink's 
ODE solvers. A schematic of the last option is shown in Fig. 7. 
A simulation of the vehicle traversing a bump is shown in Fig. 8. 

Design of Nonlinear Control Laws 
Given the capability to generate models with embedded (con- 

trol) forces and torques, the natural complement is a system for 
the computation of effective control laws. Since we are interested 
in designing the architecture of the control system as well as in 
crafting specific algorithms, it is important to use symbolic 
computing methods in the design process. As the examples in the 
previous section indicate, typical systems of interest are highly 
nonlinear, and their models are too complex to be analyzed by 
hand. While there has also been a large body of work on software 
for the design and analysis of linear control systems, there has 
been much less work on tools for the design of nonlinear control 
systems. In this section we shall describe one approach to the 
synthesis of such tools starting from the geometric formulation 
of nonlinear control theory. 

In 1987 0. Akhrif developed the first computational tools for 
the design of nonlinear control systems using symbolic comput- 
ing (Macsyma) [ 11. This work was inspired by the work of J.P. 

Quadrat and his colleagues on the use of Macsyma (and Prolog) 
in the treatment of optimal stochastic control problems [7]. The 
work here builds on the tools developed by Akhrif. It employs 
new techniques of nonlinear adaptive control [9,10] and perform- 
ance evaluation by simulation. 

The Controls package includes several easy-to-use functions 
for computation of mathematical objects frequently encountered 
in control system analysis, such as Lie derivatives, Lie brackets, 
and controllability distributions, along with functions for syn- 
thesis (e.g., the dynamic extension algorithm, decoupling control 
algorithms of Hirschorn and Singh, adaptive and approximate 
linearization algorithms of Ghanadan and Blankenship, and Kok- 
otovic and Kanellopoulos, etc.), as well as functions for automat- 
ic C and MATLAB code generation. 

The tools presented here have been applied to realistic non- 
linear problems for which hand calculation is not feasible and for 
which conventional tools (e&, MATLAB, MatrixX, etc.) are not 
well suited. Earlier versions of this package were used to design 
controllers for an active automotive suspension and a magnetic 
levitation system [4,11]. In this section we illustrate the power of 
the tools by designing an adaptive tracking controller for conical 
magnetic bearings, an 18-dimensional system with complicated 
nonlinear dynamics [25]. At the end we return to the vehicle 
steering problem defined above and show how to compute the 
(local) zero dynamics of the model produced by the Dynamics 
package. 

ControZs Package Description 
The Controls package deals with MIMO nonlinear systems 

in the following form: 

where 

and 8 is a vector of (unknown) parameters. The tools in the 
Controls package fall into four general categories: (i) basic 
analysis tools; (ii) model representation; (iii) controller design; 
and (iv) simulation. 

Basic Analysis Tools 
There are several mathematical operations that occur fre- 

quently in nonlinear control systems design. Although these 
operations involve straightforward mathematics, actual compu- 
tation is tedious and time-consuming, especially for large (n>5 
state) systems. The most common of these mathematical tools 
are Lie derivatives and Lie brackets. The Lie derivative of a 
function h relative to a functionfis defined by 
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This algorithm may be expressed in Mathematica as the follow- 
ing sequence of “rules”: 

LieDerivative [ f-, h-, x-, 0 1 : =h 
LieDerivative [ f-, h-, x-1 : =Dot [ Ja- 
cob[h,xl, f l  
LieDerivative [ f-, h-, x-, 11 : =LieDeriva- 
t ive [ f , h, X I  
LieDerivative [ f-, h-, x-, n-1 : =LieDeriva- 
tive [ f , LieDerivative [ f , h, XI , x, n-1 I 
Here Jacob[h,x] is the Jacobian matrix of h with respect to x 

and Dot is a Mathematicu function for multiplying arrays (ma- 
trices), The definitions of LieDerivative make use of Mathe- 
matica k pattern checking and conditional definition capabilities 
to ensure that both the arguments and the answers make sense. 

Muthemutica has the capability to use “pure” functions in 
rules. This is a particularly convenient construction for creation 
and maintenance of control system models. The power of this 
feature can be seen in the definition of the Jacobian in Mathe- 
mutica. 

The f i s t  line in the following is a usage statement associated 
with the help system in Muthematica. The second line is the 
computation of the gradient. 
Grad::usage=”Grad[f,varlist] computes 
the Grad of the function f with re- 
spect to the list of variables varist.” 
Grad[f-,var-List] :=D[f,#]& / @  var 
In the definition of Grad, the expression D[f,#]& is a pure 

(un-named) function. The symbol D stands for derivative; so 
D[f,x] is the derivative off  with respect to a (single) variable x. 
To compute the gradient of a scalar function of a vector, we must 
compute its derivative with respect to each element of the vector. 
This is accomplished by “mapping” the operation “take the 
derivative off  with respect to a variable” (this is the meaning of 
the expression D[f,#]&). The symbol & stands for a “name” that 
one might assign to the function “take the derivative.” However, 
since we will only use the pure function once, we do not need to 
name it. Similarly, we do not need to name the variable that is its 
argument, so the symbol # is used as a place marker. 

Arguments to function definitions in Mathematica are of the 
form h[x-]:=xA2, which means any symbol substituted for the 
place holder x- is raised to the second power. The form var-List 
means the argument must be a list, a form of data verification 
provided in Mathematica. 

The symbol I@ stands for the Mathematica operation Map; 
so we could have written the definition as 
Grad[ f-, var-List] : =Map [D [ f, #I &, var] 
The use of pure functions and the capability to map functions 

over sets of arguments are powerful constructions which increase 
the expressive power of Mathemuticu programs. Map[] is espe- 
cially useful in avoiding procedural programming constructions. 
The use of Map[] in the definition of Grad[] illustrates the 
capability of Mathematica to treat functions as objects like 
symbols or numbers and use them as arguments to other func- 
tions. 

We use two lines (rules) to define the Jacobian of a function 
with respect to a vector. The f i s t  handles the case when the 
function is a vector function of a vector argument. The second 

’In the code examples that follow, we present selected components. In some cases 
additional code is required to complete the definition. 

handles the case of scalar functions (of vector arguments). These 
may be regarded as rules for the computation. Mathematica uses 
a kind of pattern matching to find the case that applies.* 

Jacob[f~List,var~Listl:=Outer[D,f,var] 
/;VectorQ[fl 
Jacob[f-,var-Listl :=Grad[f ,varl 
Outer[] is a built-in Mathemutica function which provides a 

generalized outer product. The test VectorQ[fl defined by the 
condition symbol “ /;” checks that f is a vector. If the test 
succeeds, this rule is used. If not, the next one is used. 

The next function illustrates the use of condition checking in 
Mathematica in more detail. The symbol && is logical “and.” In 
the first rule, we check that the functions are vector valued, that 
their lengths are identical (==), and that the lengths equal the 
length of the vector of variables. If this compound test succeeds, 
the rule is used. 

LieBracke t [ f-Lis t , g-Lis t , var-Lis t 1 : 
=(Jacob[g,var] . f -Jacob[f,varl . g / ;  

VectorQ [ f 3 && VectorQ [g] & &  
Length [ f ] ==Length [g] ==Length [varl ) 
( *  Test the data * )  

LieBracket[f-,g-,var-List]:= 
Jacob[g,var] f - Jacob[f,varl g 

The next sequence illustrates the recursive power of the 
language to define the Ad operator. (We omit the vector cases.) 

Ad: :usage= ”Ad[f,g,varlist,nl computes 
the nth Adjoint of the functions 
f,g with respect to the variables 
varlist . I‘ 

Ad [ f , g, var, 01 =g 
Ad[f,g,var,nl= 

LieBracket [f,Ad[f,g,var,n-11 ,varl 
Ad [ f , g, varl =Ad [ f , g, var, 1 I 
Using these functions, we can express the Hunt-Su-Meyer 

conditions [ 161 in Mathematica functions. 
Control - 
labilityDistribution[f-,g-,var-List] : =  

Module [ { k} , 
Table [Ad [f, g,var, kl , 
{k, O,Length[varl-11 1 1  
Controllable[f-,g-,var-List]:= 

If [Rank[Control- 
labilityDistribution[f,g,varll 

==Length[var] ,True, False] ; 

FeedbackLinearizable[f-,g-,var-List] : =  

cm=Table [Ad [ f , g, var , k I , 
{ k, 0, Length [var I -1 1 1 
cml=Drop[cm, -13 ; ( *  drop last element * )  
If [Rank[cm] ==Length[varl 

Module [ {cm, cml, k} , 

( *  system is controllable * )  
& &  Involutive [ cml, var] , 
True, False1 1 ; 

The Module[] construction permits the use of local variables 
in the definition of functions. We use the Mathematica Table[] 
function to construct a set of derived vector fields. The function 
Involutive[] checks that a set of vector fields is involutive, that 
is, closed under the Lie Bracket. 

Involutive[f_List,var-List]:= 
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Module[{k,h,vecl, 

h=Table[LieBracket [ f  [ [il I ,  
f[[jll,varl, 

k=Length [ f ] ; 

{i,l,kl,{j,i+l,kll; 
vec=Union[Flatten[h,ll , f l ;  

If [Rank [vec ] Rank [ f ] , False, True 1 1 
In this expression the notation f[[i]] takes the element of the 

list (vector) f. Union and Flatten are Mathematica functions for 
manipulating lists. 

With these simple operations we can define several useful 
functions for the analysis of nonlinear control systems; including 
RelativeDegree[f,g,h,x], VectorRelativeDegree[f,g,h,x], Dy- 
namicInverse[f,g,h,x], ZeroDynamics[f,g,h,x], etc. These func- 
tions were implemented by translating into Mathematica 
notation the definitions found in standard nonlinear control texts 
[ 16,261. 

Model Representation 
While it is natural to work with conventional function defini- 

tions for the vector fields that occur in nonlinear control prob- 
lems, it is more useful to create a “data structure” for maintaining 
models. The pure function construction in Mathematica is an 
effective means for accomplishing this. 

System. The data defining the controlled nonlinear system is 
stored as a Mathematica data object with “head” System and the 
associated structure 

System[ f, g, h,x,y, u, theta, analysisdatal 
where f, g, and h are Mathematica functions, x, y, and u are lists 
containing labels of the states, the outputs and the inputs, respec- 
tively, and theta is a list of uncertain parameters found in f, g, or 
h. As various function are applied to the System, their results are 
appended in the list analysisdata. 

The System object provides an economical and efficient 
organization for often bulky and unenlightening expressions. 

Makesystem. Constructing a System object is made rela- 
tively easy by the Makesystem function which has the following 
syntax: 
MakeFunction [ f, g, h, x, u,y, u, theta] 
Although generally the components of the system model 

(f,g,h) are stored as pure functions, the first three arguments of 
Makesystem can also be given as ordinary Mathematica expres- 
sions. Makesystem, if necessary, automatically converts the f,g,h 
to functions and makes sure the dimensions agree before retum- 
ing a valid System object. For example, the data 
var={xl[tl,x2[tll; 
f:={#[[2]],2 omega xi (1- mu #[[111”2 
1 #[[211 -omega”2 #[[111)& ; 
g:=iIOl,ll}l& ; 
h:={#[[ll]}& ; 
sys=MakeSystem[f,g,h,varl; 

constructs the equations of the controlled Van der Pol Oscillator 
with output 

Showsystem and GetResults. In order to examine the con- 
tents of the System object and extract the results that were 
appended to it by previous analyses, two functions are provided: 
Showsystem and GetResults. 

ShowSystem[sys], where sys is a valid System, will display 
the data of the system, f,g,h, etc., as well as a list of any functions 
which have been applied and whose results are contained in the 
data portion of this System. 

GetResults[sys, “analysis”] will retum the results of function 
called analysis which has been applied to sys earlier. For exam- 
ple, to extract results of Singh from demosys one would use 

Get Resul t s [ demosy s , ’’ S ingh” 3 
If the results are not contained within the System a string “Not 

found” is returned. 

Design Functions 
In this section we describe functions for design of nonlinear 

control laws, including adaptive and approximate methods. 
Hirschorn and Singh. The Controls package includes two 

functions for partial (input-output) feedback linearization via 
construction of right inverse systems using the algorithm of 
Hirschorn [14] and its extension by Singh [30]. Since Singh’s 
algorithm is applicable to a wider class of systems, we discuss 
its implementation. (Hirschom’s algorithm is implemented in a 
function called Hirschom with syntax identical to Singh.) 

The recursive nature of Singh’s algorithms is well suited for 
implementation in Mathematica. The command to apply Singh’s 
algorithm is 

where sys is a valid System and opts are options described below. 
Singh will append the following to the System 

where z=c+Du and K defines the relationship between z and y 
and its derivatives, 

Singh[sys,optsl 

SinghResults[D,c,K,z] 

0 0 The control to tracky is given by ut=D (z-c)  where D denotes 
the pseudoinverse of D. 

Several options are available for Singh. ScreenOutput+False 
will disable almost all screen output. RetumObject- List, instead 
of returning the original System with the results appended, will 
simply return a list of the results. 

Adaptivelkacking. The function Singh forms the foundation 
for AdaptiveTracking, which implements the adaptive algorithm 
of Ghanadan and Blankenship [9], basically an adaptive ob- 
server. Given a System object with a list of uncertain parameters, 
8, AdaptiveTracking computes the control law and the parameter 
update law to track a desired trajectory. 

The syntax for AdaptiveTracking is 
AdaptiveTracking [sys, poles, adgain, 
opts1 

where sys is a valid System object, poles is a list of 1 X r i  lists 
with ri being the ith element of the vector relative degree for the 
system, and adgain is the adaptive gain used in constructing the 
parameter update law. adgain can be supplied in two forms: a 
constant which sets the same gain for all parameters or a vector 
in which the ith element sets the gain for the ith parameter. 

4 ( t )  = x 2 ( t )  

X2(t)= 2 o g ( 1 - p 1 ( t ) * ) x 2 ( t ) -  W2X1(t)+U(t) 

yf t )=xdt)  
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Fig. 9. Magnetic bearing system (afrer Mohamed and Emad 1992). 

As in Singh, options for AdaptiveTracking include 
Screenoutput and RetumObject. In addition, Simulate+MAT- 
LAB option prepares the output to be simulated using MATLAB 
as described below. 

ApproximateAdaptiveTacking. Results of approximate 
feedback linearization theory [ 13,171 are useful design altema- 
tives to the more restrictive schemes based on exact (partial) 
feedback linearization. This scheme assumes milder involutivity 
and invertibility restrictions and can be applied to slightly non- 
minimum phase nonlinear systems as well. In [ 101 an adaptive 
approximate tracking and regulation scheme was presented for 
nonlinear systems with uncertain parameters. The function Ap- 
proximateAdaptiveTracking implements this scheme as a 
Mathematica function with syntax: 

ApproximateAdaptiveTrack- 
ing[sys,poles,observerpoles, 
Upda t eLawGain I 

where observerpoles is a list of desired observer poles for the 
adaptive scheme of [lo]. The tracking function searches for 
linear functions of unknowduncertain parameters theta specified 
in the dynamics. The regulation version of this algorithm can 
handle parameters that do not appear linearly in the system. 

Simulation 

C, MATLAB, and Simulink Code Generation 
Included in the package are two functions for automatic code 

generation in C and FORTRAN. These functions automatically 
write a subroutine compatible with the Numerical Recipes 1281 
integrator, odeint, compile the program, execute it and return the 
results to Mathematica. The following Mathematica command 
line will execute the operations listed above: 

SimulateC [sys, rules, ic, tfin, "Adap- 
tiveTracking" , toll 

where sys contains results of AdaptiveTracking, rules is a list of 
substitutions which are made before simulation is executed, ic 
are the initial conditions and to1 is an optional tolerance specifi- 
cation. 

Simulate. Functions called Simulate, and MATLABSimulate 
are included in the package to provide simulation capabilities in 
MATLAB. This is important for large systems, like the magnetic 
bearing described in the following section. Due to memory 
limitations it is not possible to analyze such a large model using 
Mathematica alone. For example, in computing a control law for 
the conical magnetic bearing, the function Singh found the 5x8 

decoupling matrix, D, which occupied 1.6 Kb (ASCII) and its 
pseudoinverse, Do, which occupied 3.87 Mb (ASCII). Thus, Do 
was too large to be manipulated, and the control law, when saved 
as ASCII text, was approximately 16 Mb. Consequently, straight 
forward inclusion of the control and parameter update laws into 
C or Fortran code was impractical for this application. 

MATLABSimulate writes a MATLAB function which at each 
time instant evaluates the components of the control law, numeri- 
cally computes the pseudoinverse of D using the MATLAB 
function pinv and then performs the necessary matrix multipli- 
cations and additions to find the control. Besides allowing simu- 
lation for large systems, linking to MATLAB in this way provides 
extra flexibility in selecting time limits, tolerance, and initial 
conditions without the need to recompile every time a change is 
made. The disadvantage of this method is slower computation 
time. 

If the simulation is to be performed using MATLABSimulate, 
the option 

Simulate -> MATLAB 
must be used when performing AdaptiveTracking, e.g., 
AdaptiveTracking[sys,poles,adgain,MAT- 
LABSimulate-> 
True ] 
Next, we need to form the substitution rules for desired output 

trajectory and its derivatives as well as the actual output and its 
derivatives. The latter can be accomplished using the function 
BuildSubRules with the following syntax: 

BuildSubRules[sys,vectorrelativedegreel 
The vector relative degree is displayed in the course of 

running Singh or it can be computed using VectorRelativeDe- 
gree. The substitution rules for the desired output and its deriva- 
tives must be provided by the user. 

Finally, we can automatically write a MATLAB function for 
simulation using 

Simulate [sys, "MATLAB", "dir" , "file- 
name", rules] 
The MATLAB function will be stored in the file called 

fi1ename.m in directory dir and can be integrated using standard 
MATLAB integrators, e.g. ode45. In fact, two options are avail- 
able to use MATLAB to simulate systems. If the option MAT- 
LAB is selected, then Simulate generates a MATLAB function 
that will simulate the system using the MATLAB ODE solvers. 
If the option Simulink is selected, then Simulate generates a file 
that generates a Simulink block diagram, and the simulation can 
be run from the Simulink environment. 

Application: Adaptive Control of a Conical 
Magnetic Bearing 

Conical magnetic bearings have been the subject of active 
research recently. They provide a non-trivial test for linear and 
nonlinear design methodologies. For the bearing configuration 
shown in Fig. 9 we use the model derived by Mohamed and Emad 
1251 which has 18 states, eight controls, eight outputs, and several 
disturbances. We include an uncertain parameter representing 
rotor angular ~e loc i ty .~  Using the functions in the Controls 
package, we first model the magnetic bearings as a System object 

'Mohamed and Emad did not consider parametric uncertainty or adaptive control. 
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and then design and simulate a nonlinear adaptive control which 
achieves asymptotic tracking. 

Model 
The following Mathematica script defines the model based 

on the analysis in [25] First, we define the right-hand side of 
x = f ( x ,  u, t ;  e) 
fll:= k ~ll[t]*~ll[t]*(l+ 2(DO + 
xl [tl ) / (pi*h) 1 

xl [ t 1 ) / (pi*h) ) 

x2 [tl ) / (pi*h) 1 
fr2:= k x14[t]*x14[t]*(l+ 2(DO - 
x2 [tl) / (pi*h) 1 

x3 [tl ) / (pi*h) ) 

x3 it1 ) / (pi*h) ) 
fr3:= k x17[t]*x17[t]*(l+ 2(DO + 
x4 [tl 1 / (pi*h) ) 
fr4:= k x18[t]*x18[t]*(l+ 2(DO - 

x4 [tl ) / (pi*h) ) 
ran=2R/ (muO*A*N) ; cos=Cos [sigma] ; 
mg=m*g/ 2 ; 
H1=( (l*l/Jy) + l/m) cos; H2=( (l*l/Jy) - 
l/m) cos; 
rhsl:=x6[tl; 
rhs2:=x7[tl; 
rhs3:=x8[tl; 
rhs4:=x9[tl; 
rhs5:=xlO[t]; 
rhs6: = alpha/ (2m) (xl [tl +x2 [tl -p 

-Hl((fll-fl2)cos-mg)+H2((frl-fr2)co s -  
mg) ; 

f12:= k ~12[t]*~12[t]*(l+ 2(DO - 

frl:= k x13[t]*x13[t]*(l+ 2(DO + 

f13:= k ~15[t]*~15[tl*(1+ 2(DO + 

f14:= k ~16[t]*~16[t]*(l+ 2(DO - 

JX / ( 2 Jy ) ( ~8 [ t 1 -X9 [ t 1 - 

rhs7: = alpha/ (2m) (xl [t] +x2 [tl ) +p 
Jx/(2Jy) (~8[t]-x9[tl)- 
H1( (frl-fr2)cos-mg)+H2( (fll-fl2)cos - 
mg) ; 
rhs8: = alpha/ (2m) (x3 [tl +x4 [t] 1 +p 

f14)cos+H2(fr3-fr4)cos; 
rhs9:= alpha/ (2m) (x3 [t]+x4 [t] ) -p 

fr4)cos+H2(f13-f14)cos; 
rhslO:= -beta/m x5[t]-2 gamma/m 
xlO[t]+ @PTEXT = 
+Sin [ sigma] /m ( ( f 11 + f 12 + f 13 + f 14 ) - 
(frl+fr2+fr3+fr4)); 
rhsll:= ((43.284433+~1) - ran (DO + 
xl [tl 1 xll [tl) /N; 
rhsl2:= ( (44.208506+~2) - ran (DO - 
xl[tl) x12 [tl /N; 
rhsl3:= ((43.284433+~3) - ran (DO + 
x2 [tl ) x13 [tl ) /N; 
rhsl4:= ((44.208506+~4) - ran (DO - 
x2[tl) xl4[tl)/N; 
rhsl5:= ((44.208506+~5) - ran (DO + 
x3 [tl ) x15 [tl ) /N; 

Jx/(2Jy) (~6[t]-~7[tl)-Hl(f13- 

Jx/ ( 2 Jy ) ( x6 [ t I -x7 [ t 1 ) -H1( f r 3 - 

I Gap error response x lo4 

I 
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Fig. 10. Gap deviations w i thp= lP5  and initial parameter error of 
10%. 
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Fig. 11. Parameter update with p = I P 5  and initial parameter error 
of 10%. 

rhsl6:= ((44.208506+~6) - ran (DO - 
x3 [tl ) x16 [tl ) /N; 
rhsl7:= ((44.208506+~7) - ran (DO + 
x4[tl) xl7[tl)/N; 
rhsl8:= ((44.208506+~8) - ran (DO - 
x4 [tl x18 [tl ) /N; 
rhs:={rhsl, rhs2, rhs3, rhs4, rhs5, 
rhs6, rhs7, rhs8, rhs9, rhsl0, 
rhsll, rhsl2, rhsl3, rhsl4, rhsl5, 
rhsl6, rhsl7, rhsl8 1 ; 
Erhs : =Expand [ rhs] ; 
Then we identifyflx;8) and g(x; 8) fromflx, u, t; 8) using 

the fact that u appears linearly. 
gl:=Coefficient[Erhs,ul,l]; 
92 : =Coefficient [ Erhs, u2,lI ; 
g3:=Coefficient [Erhs,u3,1] ; 
g4:=Coefficient [Erhs,u4,1] ; 
95 : =Coefficient [ Erhs, u5,l I ; 
g6:=Coefficient[Erhs,u6,1]; 
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g7:=Coefficient[Erhs,u7,1]; 
g8:=Coefficient[Erhs,u8,1]; 
g: =Trans- 
pose [ {gl, 92,93, g4,95,96,97,981 I ; 
f:=Erhs-g.u; 

~ : = { ~ l [ t l , ~ 2 [ t l , ~ 3 [ t l , ~ 4 [ t l , ~ 5 ~ t l , ~ 6 ~ t l ,  
x7[tl ,x8[tl ,x9[tl ,xl O[tl, 
xll [t] ,xl2tl ,x13 [tl ,x14 [t] ,x15 [tl ,x16 [tl 
,x17[tl ,x18[tll; 
Y:={Yl [tl ,Y2 [tl ,Y3 [tl tY4 [tl tY5 [tl I ;  
~ : = { u l [ t l , ~ 2 [ t l , ~ 3 [ t l , ~ 4 [ t ] , ~ 5 ~ t l , ~ 6 ~ t l ,  
u7[tI,u8[tlI; 
To speed up the calculation, wherever possible we substitute 

numerical values for any parameters that are known with cer- 
tainty. In this case, Values is the list of substitution rules. The 
Mathematica symbol I. is a shorthand notation for the function 
Substitute. Chop removes values below a given precision level 
(due to numerical errors). 
nf=Chop [f/ .Values] ; ng=Chop[g/.Val- 
ues] ; nh=Chop [h/ .Values] ; 
Using Makesystem we create a valid System object: 
magbear=MakeSystem[nf,ng,nh,x,y,u,{pll; 

Control System Design 
Given the model, we apply AdaptiveTracking with options 

which prepare the output for MATLAB simulation and suppress 
output to the screen: 

poles=Table[-10A3, I S } ,  {3}1; 
adgain=10"4; 
magbear=AdaptiveTracking[ magbear, 
adgain, poles, 

Simulate-MATLAB, 
ScreenOutput-False]; 

Throughout the above manipulations the rotor angular veloc- 
ity was allowed to remain in its symbolic form, p. In general, the 
angular velocity may not be known with certainty and we treat p 
as an uncertain parameter. The parameter update law computed 
by AdaptiveTracking will allow us to track the desired output. 

Since the outputs are the deviation from gap equilibrium 
value, our goal is to track zero. Therefore, we define the desired 
output and its derivatives 
ydes[l]=O; 
ydes [2] =O; 
ydes[3]=0; 
ydes[4] =O; 
ydes [5] =O; 
outdrule=Table [outd [i] [y] - 
D[~des[il,{t,j}l,{i,5I,{j,O,3Il 
Next, we use BuildSubRules to write y ( t )  and its derivatives 

thetarule=Thread[p,pA2}- 
thetabarl [t] , thetabar2 [t] ] 
yrule=BuildSubRules [mag- 
bear,{3,3,3,3,3},thetarulel 
Finally, we combine the above rules with the substitution rule 

for the actual value of p, 
rules=Join[outdrule, yrule, {p-10A4}]; 

and write a MATLAB function to simulate the controlled system, 
MATLABSimulate [magbear, "-/MagBear/ I' , 
"magsim", rules] ; 

as functions of x, 
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The following MATLAB code simulates the magnetic bear- 

ic= [zeros (1,lO) , 
.002061,.002105,.002061,.002105,.002105, 
.002105,. 002105, .002 105, 0,Ol ; 
tfin=l; tstart=O; 
[t,state]=ode45( 'magsim', tstart, tfin,ic, 1 .e-7,1); 
The simulation was performed for values of p ranging from 

10 to lo5. The nonlinear control law stabilized the system with 
initial errors on the order of the equilibrium gap length (OS"), 
a substantial improvement over the results obtained using linear 
controls in [25]. Figs. 10 and 11 show stabilization of the outputs 
and convergence of the parameter update with random initial 
conditions and parameter error of 10%. 

Additional details of the analysis of this system can be found 
in [27]. 

ings, 

Computing the Local Zero Dynamics 
To illustrate the integrated use of the Dynamics and Controls 

packages, we return to the problem of steering the car. Recall that 
the equations for the car following a prescribed trajectory were 
generated by the Dynamics package. We use the Controls pack- 
age to compute the zero dynamics for the case of motion along 
a straight path. The vector relative degree is found to be [ 1, I]. 
Therefore, the zero dynamics involve three first-order differen- 
tial equations in the zero dynamics "state" variables. The zero 
dynamics are computed using the following program. 

<Controls' ( *  Load Nonlinear Control 
Package * )  
<GeoTools' ( *  Load Differential Geome- 
try Tools used in Controls * )  
( *  compute relative degree * )  

ro=VectorRelativeOrder [ f, g, h, var] ; 
( *  compute feedback linearizing/decou- 
pling control * )  

{Rl,R2, R3,R4,u}=IOLinear- 
ize[f,g,h,varl; 

z=NormalCoordinates [f ,g,h,var,ro] 
( *  compute linearizable coordinates * )  

/ .  {wd-0 1 ;  
( *  shift origin to point of interest * )  

{f,g,h,u, zI={f,g,h, u, z }  
/.{~2-~2+Vd}; 

( *  compute zero dynamics * )  
uo=u/. {vl-O,v2-0}; 
fO=LocalZeroDynamics 
[ f, g, h, var, u0, zl ; 

( *  linearize zero dynamics and deter- 
mine stability of origin * )  

Anu=Jacob [ f 0, {wl, w2, w3 1 I 
/.{wl-0,w2-0,w3-0,b-a+nu}; 
Eigenvalues[Anu/.{nu-O,s-o}] 

Up to fourth order terms the zero dynamics are defined by the 
equations 

wldot = { ~2 } 
w2dot={(kappa*(2*a + R*s)*wl) / 
(2*Izz) - (kappa*(a + 
R*s)*wlA3) / (2*Izz) + (kappa*(-2*a + 
2*b -R*s)*w3) / (2*Izz*Vd) + (kappa*(- 
2*a + 2*b - R*s)*w3^3) / (12*Izz*VdA3) 
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+ wlA2* ((kappa*(a + R*s) *w3) / 
(2*Izz*Vd)) + 
w2* ( (a*kappa*R*s) / (2*Izz*Vd) + 
(a*kappa*R*s*wl*w3) / (2*Izz*VdA2) - 
(a*kappa*R*s*w3”2) / (4*Izz*VdA3) 
+wlA2*(-(a*kappa*R*s)/(2*Izz*Vd))l 
w3dot={(kappa*wl) / ml - (kappa*wlA3) 
/ (2*ml) -(2*kappa*w3) / (ml*Vd) - 
(kappa*w3^3) / (3*ml*vdA3) + 
w1^2* ( (kappa”w3) / (2*ml*Vd)) + 
w2* ( (kappa*R*s) / (2*ml*Vd) + 
(kappa*R*s*wl*w3) / (2*ml*VdA2) - 
(kappa*R*s*w3^2) / (4*ml*VdA3) - 
BPTEXT = (kappa*R*s*w3^4) / (16*ml*VdA5) 
+ w1^2* ( -  (kappa*R*s) / (2*ml*Vd) ) ) l 
We can test the stability of the equilibrium point w=O by 

examining the linearized zero dynamics computed at the end of 
the program 

1 

I -  - 
mlVd 1 

The eigenvalues are readily obtained but they are lengthy 
functions of the parameters. Some insight is obtained, however, 
by examining the special case, a=b and s=O, in which case the 
eigenvalues simplify to 

Hence, we see that the zero dynamics are unstable. Because 
the eigenvalues vary smoothly as a function of parameters, this 
situation will be true for a-b and s small, but not necessarily zero. 
Furthermore, since I ,  is small, X2,3 are a pair of “parasitic” zeros, 
one of which is far into the right half plane, the other to the left. 
These locations may or may not make the vehicle difficult to 
control (by an experienced driver). 

The technique for computing the (local) zeros of a nonlinear 
control system is described in [19]. Some earlier work which 
indicated the difficulty of this computation was reported by de 
Jager [8]. 

Conclusions 
Integrated design of systems and their controls requires tools 

for symbolic modeling and manipulation. Our approach involves 
the integration of symbolic and numerical computing. Successful 
modeling of complex vehicle dynamics and design of adaptive 
tracking controls for a detailed model of a magnetic bearing 
demonstrate that this methodology can solve realistic problems. 

Remark 
The Controls package also includes a collection of functions 

for the design and analysis of linear control systems. 
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